Standard Operating Procedures

Beechcraft Super King Air 350
i. Distribution List Copies

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chief Pilot</td>
<td>1</td>
</tr>
<tr>
<td>Operations Manager</td>
<td>1</td>
</tr>
<tr>
<td>Director of Flight Operations</td>
<td>1</td>
</tr>
<tr>
<td>Transport Canada</td>
<td>1</td>
</tr>
<tr>
<td>Base Libraries</td>
<td>2</td>
</tr>
<tr>
<td>C-FWPR</td>
<td>1</td>
</tr>
<tr>
<td>C-FRLD</td>
<td>1</td>
</tr>
<tr>
<td>C-FVKC</td>
<td>1</td>
</tr>
<tr>
<td>C-GJLK</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>10</td>
</tr>
</tbody>
</table>

ii. Record of Amendments

<table>
<thead>
<tr>
<th>No.</th>
<th>Date</th>
<th>Section(s)</th>
<th>Change</th>
<th>By</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005-1</td>
<td>Jan 1, 05</td>
<td></td>
<td>Original</td>
<td></td>
</tr>
<tr>
<td>2007-1</td>
<td>Mar 12, 07</td>
<td></td>
<td>Major Format Revision</td>
<td>SL</td>
</tr>
<tr>
<td>2007-2</td>
<td>Nov 20, 07</td>
<td>1.28.15</td>
<td>GPS Approach Procedures Updated</td>
<td>JG</td>
</tr>
<tr>
<td>2008-1</td>
<td>Oct 20, 08</td>
<td>All</td>
<td>Minor Changes</td>
<td>JG</td>
</tr>
<tr>
<td>2009-1</td>
<td>Mar 5, 09</td>
<td>1.24, 1.29</td>
<td>Emergency Descent Procedure Updated</td>
<td>JG</td>
</tr>
<tr>
<td>2009-2</td>
<td>Mar 30, 09</td>
<td>All</td>
<td>Formatting – Reissue Complete Package</td>
<td>JG</td>
</tr>
<tr>
<td>2011-1</td>
<td>Mar 16, 11</td>
<td>2.12</td>
<td>Typos</td>
<td>SL</td>
</tr>
</tbody>
</table>

With any section revision, the header of the entire section will be updated to reflect revision date. Also, with any revision affecting the TOC, LOEP, or this ROA, new pages will be distributed accordingly.

iii. List of Effective Pages

Amendments are made and replaced as entire sections.

<table>
<thead>
<tr>
<th>Section #</th>
<th>Amendment Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preamble</td>
<td>October 20, 2008</td>
</tr>
<tr>
<td>1</td>
<td>March 30, 2009</td>
</tr>
<tr>
<td>2</td>
<td>March 5, 2009</td>
</tr>
<tr>
<td>3</td>
<td>February 26, 2008</td>
</tr>
<tr>
<td>Appendix</td>
<td>August 13, 2008</td>
</tr>
</tbody>
</table>
iv. Table of Contents

i. Distribution List Copies ... ii
ii. Record of Amendments ... ii
iii. List of Effective Pages ... ii
iv. Table of Contents .. iii
v. Preamble ... vi
vi. Application ... vi

1 General ... 1

1.0 Policy ... 1
1.1 Crew Scheduling ... 1
1.2 Duties Prior To Departure ... 1
1.3 Fuel Requirements .. 2
1.4 Cockpit Preparation .. 2
1.5 Use Of Avionics .. 2
1.6 Use Of A Ground Power Unit .. 2
1.7 Inverters ... 3
1.8 Weight And Balance Procedures ... 3
1.9 Airstair Door .. 3
1.10 Communication ... 4
1.11 Crew Coordination ... 4
1.12 Checklists ... 5
1.13 Engine Start Procedure ... 5
1.14 After Start Procedures ... 5
1.15 Taxi Procedures ... 6
1.16 Run-up Procedures .. 6
1.17 Aircraft Control Transfer ... 7
1.18 IFR and VFR Departures .. 7
1.19 Take-Off .. 9
 1.19.1 Normal Take-Off .. 9
 1.19.2 Crosswind Take-Off ... 11
 1.19.3 RVR 600/1200 Take-Off .. 11
 1.19.4 Rejected Take-Off .. 11
1.20 Climb ... 11
 1.20.1 10,000 foot Check .. 12
 1.20.2 Flight Level 180 Transition .. 12
 1.20.3 Effect Of Temperature on Altimeter Readings 12
1.21 Cruise ... 12
1.22 Descent .. 12
 1.22.1 Flight Level 180 Transition .. 13
 1.22.2 10,000 ft Checks ... 14
1.23 Holding ... 14
1.24 Flap and Gear Operation ... 14
1.25 Approach ... 14
 1.25.1 Approach IN IMC, Night VMC, White-Out/Obscured Conditions .. 15
 1.25.2 ILS Approach (2 Engine) .. 15
 1.25.3 Pilot Monitored Approach (PMA) 16
 1.25.4 Non Precision Approach (2 Engine) 17
 1.25.5 RNAV (GPS / FMS) Approach ... 18
1.26 Missed Approach or Go-Around ... 21
1.27 Circling Approach ... 21
1.28 Single Engine Approaches .. 21
1.29 Landing .. 22
 1.29.1 Crosswind Landings ... 22
 1.29.2 Partial Flap Landings .. 22
 1.29.3 After Landing .. 23
1.30 Engine Shutdown .. 23
1.31 Cockpit Organization .. 23

2 Operating Notes and Emergencies .. 25
2.0 Emergency Procedures ... 25
2.1 Pilot Incapacitation ... 25
2.2 Two Communication Rule .. 25
2.3 Boarding/Deplaning with an Engine(s) Running ... 26
2.4 Lap and Shoulder Harness .. 26
2.5 Operating in Icing Conditions (In visible moisture and OAT less than +5°C) ... 26
2.6 Circuit Breakers .. 27
2.7 Emergencies (General) .. 27
2.8 Stall Recovery ... 28
2.9 Rejected Take-Off (malfunction below V1) ... 29
2.10 Engine/Cabin Fire on the Ground ... 30
2.11 Engine Fire in Flight ... 31
2.12 Engine Failure or Fire at or Above V1, Takeoff Continued 31
2.13 Engine Failure During Flight ... 33
2.14 Smoke in the Aircraft .. 33
2.15 Emergency Descent .. 34
2.16 Bomb Threat ... 34
2.17 Hijacking .. 34
2.18 Emergency Landing/Ditching .. 35
 2.18.1 Type of emergency ... 35
 2.18.2 Evacuation information .. 35
 2.18.3 Signals ... 35
 2.18.4 Time remaining .. 35
 2.18.5 Relocation of Passengers ... 35
 2.18.6 Announcements ... 35
 2.18.7 Evacuation drill .. 36
 2.18.8 Passenger Evacuation ... 36

3 System Checks and Operational Requirements ... 39
3.0 General ... 39
3.1 Crew Briefing ... 39
 3.1.1 Take-Off Briefing .. 39
 3.1.2 Emergency Briefing .. 40
 3.1.3 Approach Briefing .. 40
3.2 Period Systems Checks ... 40
 3.2.1 Current Limiter Check ... 40
 3.2.2 Electrical System Check ... 41
 3.2.3 Inverter System Check ... 41
 3.2.4 Electric Trim Check .. 42
 3.2.5 Autopilot Test .. 42
 3.2.6 Yaw Damp System Test .. 43
 3.2.7 Stall Warning System ... 43
 3.2.8 Overspeed Warning Test ... 43
 3.2.9 Overspeed Governor / Rudder Boost ... 43
 3.2.10 Engine and Prop De-Ice ... 44
 3.2.11 Airframe De-Ice System ... 44
3.2.12 Autofeather System Test ... 45
3.2.13 Fire Extinguisher System ... 45
3.2.14 Oxygen Supply and Use ... 45
3.3 Time and Clock ... 45
3.4 Collision and Bird Avoidance – Use of Lights 46
3.5 Fuel Requirements ... 46

Appendix

A Checklists (Emergency / Abnormal / Normal Procedures)

B Profiles

The appendix is contained in a separate document.
v. Preamble

These Aircraft Standard Operating Procedures (SOPs) are issued by Carson Air Ltd. for guidance in the operation of Beechcraft King Air 350 aircraft. The SOPs cannot cover all circumstances.

However, they are intended to assist personnel to operate aircraft within the limitations of the aircraft flight manual. All personnel are expected to exercise sound judgment and consistency in their application.

The greatest advantage of multiple crewmembers on board an aircraft is that more than one person can contribute to the safety and effectiveness of the operation. In order for individual crew members to contribute as much as they can, they must both meet a standard, and (for the most part) carry out their duties in a standard manner. The SOPs deal primarily with the standardization of how the crew completes their duties. Standardization is one of the most powerful tools available to the crew to prevent the undesirable, to determine when something undesirable is occurring, and to deal with the undesirable should it occur. These SOPs are provided as a part of the standardization tool. However, a standard procedure cannot be devised to cope with all situations. Although the SOPs are to be complied with to the extent practical, there may be situations where compliance with some part is inadvisable. Should it be appropriate to deviate from the SOPs all applicable personnel shall be thoroughly briefed.

This chapter contains information of a general nature that applies to several aspects of the operation or does not conveniently fit into the other more specific chapters.

vi. Application

Publications. The SOPs supplement and expand on the information contained in numerous publications. In particular the SOPs supplement the following publications:

i) Beechcraft King Air 350 approved Aircraft Flight Manual (AFM);
ii) Carson Air Ltd. Operations Manual; and
iii) Canadian Aviation Regulations (CARs).

Aircraft Flight Manual Every effort has been made to ensure that the SOPs are compatible with the approved Aircraft Flight Manual. The SOPs are designed to promote the coordination of the multiple crewmembers during operation of King Air 350 aircraft. The SOPs are not intended to replace the Aircraft Flight Manual, but to supplement it. Therefore, there are many cases where the SOPs detail additional requirements to the AFM.

Company Operations Manual Some areas of the SOPs deal with similar subjects that are found in the Company Operations Manual. The SOPs supplement the Company Operations Manual. However, the SOPs detail the procedures specifically for when the aircraft is operated by multiple crewmembers. Therefore, where a difference exists from the Company Operations Manual, the SOPs shall be followed unless safety is jeopardized.

Standard Operating Procedures are established to organize all cockpit sequences and to coordinate two crew actions. They also set the standards that a Check Pilot will use to judge a pilot’s performance during flight training, line indoctrination, and during proficiency, instrument, or line checks. These procedures will be followed on every flight.

The Captain has the final authority and responsibility for the safe completion of the flight. He or she will be expected to use all appropriate sources of information, including other crewmembers, to accomplish this task.
At all times, the primary duty of the Pilot Flying (PF) is to fly the aircraft regardless of distractions. The primary duty of the Pilot Not Flying (PNF) is to assist in the safe completion of the flight and to perform secondary duties such as systems operation, communications, checklists and other duties.

Finally, when making decisions, Flight Crews should remember that Carson Air priorities are to consider factors that enhance first of all safety, then passenger comfort/goodwill, and finally our own schedule and internal wishes.

These procedures will be amended and added to as necessary. Any suggestions should be presented in writing to the Chief Pilot.
1 General

1.0 Policy
Bearing in mind that safety must ultimately take precedence over all other factors, Company policy is that customer satisfaction must be paramount in everything we do. The crew must make every effort to get our patients and passengers to their destinations as quickly as safely possible while at the same time making the flight as safe and as routine as possible.

1.1 Crew Scheduling
Every effort will be made to schedule crews as far in advance as possible and not to overload any one individual, but short-notice changes will inevitably take place and pilots will be expected to adapt if at all possible. Pilots will attempt to call any crewmember late to work after 15 minutes. If there is no communication with the late crewmember then the Chief Pilot is to be notified.

1.2 Duties Prior To Departure
The King Air 350 is for the most part, dedicated to the air ambulance role. Check in time and the start of your duty day begins when the pilots start their shift.

Captain's Responsibilities:
- Obtain a thorough weather briefing
- Prepare the Operational Flight Plan
- File that flight plan with NavCanada
- Consult Performance Charts
- Order fuel
- All engine starts
- First leg of the day
- Any unusual take-offs or landings including RVR1200
- All gravel operations
- Emergencies
- General clean-up of the aircraft after flight

First Officer's Responsibilities
- Aircraft Walk Around
- Cockpit Set up
- Cabin Inspection
- Arranging for the aircraft to be positioned for departure
- Supervise Fuelling
- Stock the aircraft with standard or special catering
- Passenger Briefing including patient evacuation.
- General clean-up of the aircraft after flight

The SIC will assist the PIC as required. If changes to this routine are to be made, the changes must be understood and agreed to by both pilots beforehand.

When a crew consisting of two captains has been released for a flight, the pilot occupying the left seat shall always be designated as the PIC for the particular leg being flown. The PIC for the conduct of the entire flight is appointed by Flight Operations and is delegated by the first name on the crew list on the scheduling board. Two qualified captains may switch seats as agreed if both are right seat qualified.

In the event of a quick turn it is highly advisable to radio ahead to the appropriate FBO and have fuel, de-ice, etc. waiting for the scheduled arrival time.
1.3 Fuel Requirements
Once the fuel requirements have been determined from the Operational Flight Plan, the Captain will place the fuel order. An attempt should be made to give this fuel order to the FBO as early as possible to facilitate an on-time departure. A crewmember should supervise the fuelling to ensure that the correct amount and type of fuel are uplifted. Whenever possible, the fuel ticket should be signed and retained with the paperwork for the day. For most Air Medevac operations, fueling to maximum capacity will not place the Beechcraft Super King Air 350 aircraft beyond it’s maximum allowed take off weight of 15,000 lbs., however, the length of some airport runways may require a reduced take-off weight so there is no standard load of fuel. Once the itinerary has been established and the most restrictive take-off runway has been determined, the fuel load can be determined and ordered.

Fuelling with passengers on board is allowed subject to the conditions in the Operations Manual and CARs. The contract we have with the BCAS allows flight crews to fuel with passenger and patients on board. All pilots are to be familiar with the protocols laid out in the contract and Ops manual. If possible the pilots should give as much advance notice to the paramedics if there’s the need for this procedure.

1.4 Cockpit Preparation
The ATIS and clearance (if applicable) and cockpit set-up will be performed in advance of departure time. This includes testing the various avionics systems as well as setting those systems, as appropriate, for the departure. The GPS/FMS can be programmed prior to start by operating the ground clearance system. The Comm radios in the Beechcraft Super King Air 350 can be programmed with up to 6 pre-selected frequencies and the Nav radios with 4 frequencies. The PNF will discuss with the medical staff any cabin altitude considerations they may have.

1.5 Use Of Avionics
Avionics equipment deteriorates in direct proportion to the length of time that it is in operation. As a general rule therefore, it should not be turned on unless it is to be used for its intended purpose on that particular flight. This applies especially to the radar, which shall remain in the STANDBY mode when not in use.

In the Beechcraft Super King Air 350, all the avionics are an integrated commodity and all must be on for normal operation. The Terrain Awareness and Warning System (TAWS) / Enhanced Ground Proximity Warning System (EGPWS) and the Multi Function Display utilize the airborne radar screen so it must be on for all operations except pre-flight programming. Ensure the radar is on standby for all ground operations. All GPS programming will be accomplished as a flight plan prior to take-off. Only waypoints derived from the database will be used to determine the flight plan. When flight plan selection is done as a pre-flight procedure, both pilots must agree to the selection. Always program the destination airport but be sure the clearance issued by ATC is to either the airport or the navaid. Never fly to the airport when the clearance is to the VOR with the same name or vice versa. When the runway and/or the approach in use can be determined, the approach will be programmed and a clearance to the IAF can be requested. Never fly to an IAF without specific clearance. Always fly the route ATC has cleared the flight to. If pre-flight programming includes powering up the EFIS, care must be taken to ensure the EFIS/Avionics cooling fan is operating properly to prevent heat distress to the EFIS tubes.

1.6 Use Of A Ground Power Unit
A GPU should always be used for preflight and engine start if one is available, especially for the first start of the day. If the GPU is to be used to operate equipment and to charge the batteries prior to engine start, the battery switch, the battery Master MUST be selected ON PRIOR to applying GPU power to power the avionics master to the closed position. This will minimize the possibility of voltage surges reaching the avionics systems. Prior to energizing the electrical system with the GPU, voltage can be checked with the overhead selectable voltmeter control and
must be within the limits described in the limitations section of the AFM. The pilot must monitor the GPU at all times.

If a GPU is used to assist the batteries in starting an engine, it must be limited to provide maximum amperage of 1000 amps. The battery switches must be in the ON position throughout and no attempt should be made to bring the generators on line before the GPU has been disconnected from the aircraft.

1.7 Inverters
In normal operations, The Beechcraft Super King Air 350 utilizes both inverters simultaneously. Standard practice is to test the inverter system on the first flight of the day and return both inverter switches to the on position for normal operations.

1.8 Weight And Balance Procedures
A weight and balance form must be completed prior to every flight in the King Air 350. A copy of this form must be retained at the departure point, whenever practicable.

It is the Captain’s responsibility to ensure that the aircraft is loaded within all AFM limitations. In normal operations, the rear baggage compartment will be bulked out before the gross weight has been exceeded but flight crews must be aware of the limitations. An approved baggage restraint system is used to secure all baggage and the installed cabinets but still allow in-flight access by the medical staff. The total weight of the equipment stored on a regular basis has been weighed at 300 lbs and no changes or additions have been made since the weighing. The ramp will be secured to the aft sidewall with the supplied restraint system.

With the two Life Port aero sled system, it is normal practice to load a single patient on the aft sled. This practice will not put the aircraft beyond its aft C of G limit. A critically ill patient may be loaded on the forward sled for better in-flight care. Flight crew must determine in advance where the patients are located. If the forward sled is utilized, the aft sled must be removed and reinstalled when the patient is aboard. Do not set the aft, or any sled, on the ground with the sliding pads in contact with the ground nor allow the mattress pad to get wet or dirty. When transporting 2 patients, determine which patient is the first one off and load that one on the rear sled. If this is not possible, arrangements may have to be made for an extra ambulance to facilitate the transfer. Check with the medical personnel. Since the leveling stand for the ramp rests on the doorsill as opposed to the step, the load limitation on the door is not a consideration. There is no maximum load of the stretcher and/or the ramp. Lifeport has done testing up to and including 1000 lbs.

The crew must also be constantly aware of performance considerations such as (among others) Maximum Take-off Weight. The most restrictive airport/runway must be determined when accepting the trip and the maximum fuel/patient load must be calculated prior to ordering fuel. It is possible that the aircraft will depart home base within performance limitations but be beyond the Maximum Take-off Weight for the subsequent leg, due mostly to runway or field length.

1.9 Airstair Door
To prevent accidental damage to the air stair door during the opening and closing process, the pilots or qualified ground personnel are the only persons to operate the door. Do not allow the door to drop at any time due to the fact that snubber failure will result in damage to the door. Do not attempt to close the doors with the bayonets extended, as this will cause damage to the doorframes and/or the latching mechanisms. Do not pull the door closed with the door handle. Use the rubber encased cables.

Although there is no AFM limitation on towing the aircraft with the cabin door open, any uneven surface could allow the open door to contact the ground and therefore all doors must be closed prior to towing the aircraft.
1.10 Communication
Communication in the cockpit is vital to safety and professionalism. It is important that standard terms and phraseology be used at all times. Radio calls and Passenger Briefings should be done by the PNF whenever possible and shall be made in a professional and courteous manner. There shall be no unnecessary conversation in the cockpit during critical phases of flight. This includes take-off, climb below 10,000 feet, approaching any level off altitude, approaching a turn in the flight path, descent below 10,000 feet, approach and landing.

1.11 Crew Coordination

a) General. In any multi-crew operation, crew coordination is vital to the safe and effective accomplishment of all flights. The Captain has overall responsibility for the safety and success of the operation. This fact does not absolve the other crew members from their responsibility for doing all that is reasonable to improve safety and enhance the operation. An individual crew member's responsibility does not stop at the boundary of the job description for that position. Rather it extends to any area of the operation that the crew member comes in contact with. Flying in a multi-crew environment is unquestionably a team effort. No single member is any less, or any more valuable than any other. During periods of high workload or high stress, it may be very difficult to ensure that critical information is assimilated and acted upon appropriately. It is the responsibility of the crew collectively and individually to ensure that critical information is passed, understood, and acted upon in a manner that fits the situation.

b) No crew member need fear retribution for making an input with the intent of improving the operation.

c) Harassment in any form in response to a crew member attempting to improve the operation will not be tolerated.

d) Crew coordination is a theme that is dealt with throughout these SOPs. Almost every section contains some direction or discussion pertaining to crew coordination. The information on crew coordination that is contained in this particular section does not fit into other sections and/or is sufficiently broad in application that it is more appropriate to place it here, in a general area.

e) Procedures Description. Procedures and the crew coordination involved are detailed in tables distributed throughout these SOPs. The tables are in two or more vertical columns, dependent on the number of flight crew that are involved in the procedure. Each action is contained in a single lateral row and contains all of the actions and verbal calls of the relevant crew members. The situations are aligned with the left margin. The actions to be taken are shown with a dash "-" and indented one tab stop. Any verbal calls are treated as actions and are distinguished by being enclosed in brackets.

f) Abnormal and Emergency Procedures. The crew coordination for Abnormal and Emergency situations is discussed in the chapter dedicated to those procedures.

g) Procedures Common to All Crew Members. To the extent that their duties permit, all flight crew members are to monitor other crew members in the performance of their duties. Any deviation or omission by a person is to be brought to the attention of that person as soon as practicable. It is in the interest of safety and efficiency that all flight crew members have as high a situational awareness as is possible. Therefore, any action that is taken by one crew member that may be relevant to other crew members shall be brought to their attention. It should be noted that activities that superficially appear to apply only to an individual crew member, in fact, have at least indirect or perhaps delayed relevance to other members of the crew.

h) Flight Deck Absences. Flight crew who leave the flight deck during flight are to advise the remaining flight crew member(s) of the expected duration of their absence. Upon return to the flight deck the member is to be briefed of any changes including but not restricted to:
 i. Current ATC agency and frequency,
 ii. Changes to the ATC clearance,
1 General

1.12 Checklists
The exterior pre-flight check is completed from memory. The “originating checklist” will be completed using the checklist as part of the cockpit setup. The “Before Start Checklist” and engine start is completed from memory. There is an after start “Flow Check” that is completed by both pilots from memory. All checklist items from “After Start” through “After Landing” inclusive will be completed by the challenge and response method, with each item called individually. If a particular item on the checklist cannot be completed at the time that it is challenged, running of the checklist will be held at that point until the item can be actioned and responded to. Items may be done prior to the challenge, and then confirmed in sequence. The Pilot Flying (PF) will call for each check. After the completion of each checklist the challenger will call (“_X_ checklist complete”). The after take-off and after landing check will be done by the Pilot Not Flying (PNF) with a self-challenge and response method, except for items not easily accessible. This is to avoid unnecessary distractions for the PF during post take-off and post-landing phases of operation.

The emergency checklist is constructed in such a way that all BOLD items are “vital actions” and are, therefore, memory items. All other items will be called for in the normal challenge and response method.

1.13 Engine Start Procedure
Battery Start: The standard procedure in use for starting the engines using batteries is to start the right engine first and to use the generator on that engine to assist in the start of the left engine.

Ground Power Unit Start: Due to the danger of having a ground crewman close to a rotating propeller, standard procedure will be to start the left engine, disconnect the ground power unit and the do a cross-generator start on the right engine.

Traditional methods used to start the engines in most PT-6 powered airplanes have been modified by design in the Beechcraft Super King Air 350. A cross generator start is not only the normal procedure but is the only acceptable procedure. Smart Generator Control Units will limit generator output to 400 Amps during a cross generator start.

Due to propeller Beta Control linkage concerns, the engines will be started with the propeller control full forward. Do not start the engines with the propellers in feather.

If the taxiway surface is contaminated with stones or gravel, select Ground Fine after the propeller has come out of feather to eliminate propeller erosion.

The standard call made by the pilot performing the start to the other pilot shall be “#2 ENGINE CLEAR?” The other pilot shall visually confirm before stating the same. The pilot performing the start shall also verbalize the above when the engine to be started is on his or her side.

NOTE: Maximum ITT during the engine start is 1000°C degrees for one second ONLY.

1.14 After Start Procedures
After both engines have been started, the left seat and right seat pilots will begin their after start memory item flows. (Note the Captain should advise when he has completed item 1 so the F/O can begin turning on items that are his responsibility.)

<table>
<thead>
<tr>
<th>Left Seat</th>
<th>Right Seat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generator on – Current Limiter Check</td>
<td></td>
</tr>
</tbody>
</table>
The left seat pilot will then call for the “AFTER START” checklist. The checklist from this point on will be completed through a challenge and response method. The After Start checklist will be completed prior to brake release.

1.15 Taxi Procedures
The taxi check will be completed while taxiing to the active Runway and will be done by challenge and response. Since the Beechcraft Super King Air 350 can be taxied from either seat position, it is at the discretion of the pilot in command who will taxi the airplane. To eliminate surges as the propeller system changes from ground idle to flight idle while in taxiing, it is suggested that advancing or retarding the condition levers for smaller power adjustments will control speed smoothly. An autofeather test is mandatory on the first flight of the day, anytime there is a change in flight crew prior to take-off from any length challenged field and anytime a take-off is attempted in anything less than the minimum requirements for VFR. The yaw damper and autopilot system must do their internal self-test prior to engagement and this is accomplished by selecting yaw damp and autopilot on once. The systems will not engage but the Yaw and A/P symbols will appear on the Pilot’s EFIS and then disappear. Failing this procedure, the autopilot must be selected on, wait a second or two and then reengage. Autopilot and Yaw damper operation will be monitored on the Left Seat Pilots EFIS. If in-flight turbulence is suspected, select “Soft Ride” on the autopilot control. If terrain is not a concern, select “Half Bank” to limit bank angles and produce a smoother ride.

The PNF will, when prompted, action the LINE-UP CHECKS before taking control if it is his/her leg while the PF positions the aircraft on the runway centerline. A full take-off briefing, pertinent to all factors such as weather, contamination, runway condition, performance, and initial departure plan, shall be given by the PF at the appropriate prompt of the taxi checklist. Where time permits, a practice sample emergency may be reviewed as a refresher.

1.16 Run-up Procedures
The following runup and systems check will be done the first flight of the day and or anytime maintenance procedures have been accomplished that may have effect on system performance.

The procedures are as follows.*

<table>
<thead>
<tr>
<th>Area Behind Aircraft and Propeller Area</th>
<th>Clear and no loose stones.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prop Gov Test – hold and advance power. Advance Power Levers to >60% Torque.</td>
<td>Prop RPM stabilize @ 1565 RPM + or – 45 RPM. Note Rudder Boost Activation @ 30% split.</td>
</tr>
<tr>
<td>Prop Ground Idle Stop Test - hold Gnd Idle Stop and advance power to 1500 RPM on the prop.</td>
<td>Prop Pitch annunciators illuminated.</td>
</tr>
<tr>
<td>Prop Ground Idle Stop - release</td>
<td>Note decrease in prop rpm to approximately 1,150 to 1,250.</td>
</tr>
<tr>
<td>Power reduced to 22% Torque Autofeather Switch to Test Reduce power on Right Power Lever</td>
<td>At 17% Torque, Left Autofeather Annunciator extinguishes. At 10% Torque, Right Prop Feathers and the Un-feathers cyclically.</td>
</tr>
</tbody>
</table>
Repeat for Left Engine.
Both Power Levers to Idle, autofeather ceases.
Return Autofeather Switch to Arm.

* This procedure will not be accomplished on loose snow, ice or gravel surfaces or where it cannot be accomplished due to other aircraft.

1.17 Aircraft Control Transfer

Positive control of the aircraft must be maintained at all times. To accomplish this, one pilot will always take over from the other. That is to say that the pilot flying cannot give control. He can only release control after the other pilot has already taken it. In all cases, the phrase “I HAVE CONTROL” comes before the phrase “YOU HAVE CONTROL.”

Normally, the control transfer will be discussed ahead of time. The pilot releasing control might say, “Take control. Steer heading 250. Maintain 10 000 feet.” When ready, the pilot taking control will place their hands and feet on the controls and state, “I HAVE CONTROL.” The pilot releasing control will then reply, “YOU HAVE CONTROL,” and release the controls.

In some cases, such as in an emergency, one pilot might need to TAKE CONTROL from the other pilot without discussion. In this case, the pilot taking control will place his or her hands and feet on the controls and state, “I HAVE CONTROL.” The other pilot shall immediately release the controls and reply, “YOU HAVE CONTROL.”

1.18 IFR and VFR Departures

In practice, the GPS should be programmed prior to engine start or prior to taxi; however, programming must be completed prior to departure. The radios and navigational aids shall be set to the appropriate enroute facilities in an effort to minimize the amount of time the non-flying pilot is occupied switching radios, etc. during critical phases of flight. The navigational aids should be set to the same facility on both PF and PNF sides unless a different setup is considered advantageous. The heading bug on each HSI should be set to the runway heading. When “GO AROUND” is selected on the flight director, it will command whatever heading the aircraft was on when the wheels left the ground on the LSP’s EADI. The RSP will have “Raw Data” on a conventional AI. For a LSP take-off, the PF (LSP) will command the PNF (RSP) to select “Heading and Climb” on the Flight Director Control after gear retraction. The LSP will accomplish the tasks when the RSP is conducting the take-off. The Flight Director will command runway heading until “HEADING” is selected on the F/D control and will command an 8° nose up attitude for best single-engine climb until “CLIMB” is selected, where the PF (LSP) can now select the best climb attitude with the “Pitch Sync” button on the pilots control wheel. If the departure procedure calls for a turn shortly after take-off, the PF can select that heading on the EHSI bug. Whereby the F/D will now command the turn to the selected heading. The RSP CDI will be set to a probable or planned outbound track/heading. If the airport has a published departure procedure, this will be programmed into the GPS, otherwise the desired track to destination will be displayed. The LSP’s EHSI will be on HSI for departure but the entire departure procedure and on-course track shall be displayed on the MFD. If an unplanned return to the airport requires an ILS, navigation data will not be displayed until the pilots EHSI is switched over from MAP to HSI or ARC. Obviously, the Altitude Alert will be set to either the cleared altitude or the SID altitude and once airborne, “Climb” will be selected on the F/D control so “Alt CAP” will be displayed and altitude capture will be armed. The TAWS will be displayed on the MFD and on the LSP EHSI.

LSP – Left Seat Pilot
RSP – Right Seat Pilot
EADI – Electronic Attitude Indicator
EHSI – Electronic Horizontal Situation Indicator
MFD – Multi Function Display

The approach plate of the runway to be used (should an immediate return to the departure aerodrome is required under IFR conditions) shall be readily available.

As soon as the aircraft has been cleared to position, the PF shall prompt the PNF for the LINE-UP checklist. The checklist will be performed through the challenge and response method. The condition lever may be set to high idle by the PF for short runway operations in the event of a rejected take off.
Set the TCAS to “Normal.”
1.19 Take-Off

1.19.1 Normal Take-Off
The normal take-off procedure requires the use of 40% flap on the Beechcraft Super King Air 350 with “V speeds” appropriate to the current take-off weight. If the runway available is longer than required by a substantial margin, consider a flaps up take-off. Rolling take-offs will be used, when possible, provided that more than the required take-off distance is available. If holding on short paved runways, power will be applied on brakes in accordance with the power charts once ATC clears the aircraft for take-off.

Power Lever Control is as follows: The PF will maintain RTO authority after the “SET MAX POWER” call, by maintaining contact with the top of the power levers, but allowing the PNF to input small adjustments from the base of the levers.

The PNF must, at all times, ensure that no engine limit is exceeded by continuously monitoring and “fine tuning” the power levers. All takeoffs should be “max power”. This will mean max ITT or torque depending on conditions. The PNF will call, “MAX POWER SET.” During the takeoff roll, the PNF will call, “AUTO-FEATHER ARMED, AIRSPEEDS ALIVE, 80 KTS, V1, ROTATE”. The PF will respond to the 80 kts call by saying, “80 KTS.” At the call “V1” the PF shall place BOTH hands on the control column and when PNF calls “ROTATE”, rotate the aircraft to approximately an 8-10 degrees nose-up attitude. The PNF will follow up on the power levers and trim the power as necessary. The required call and responses shall be as follows:

NOTE: The “80 KTS” challenge and response is designed to be a pilot incapacitation check and airspeed indication check. If there was no response to two calls then the PNF must assume incapacitation and assume control of the aircraft. When take-off performance is “runway limited” power should be set while on the brakes. A rolling take-off in this case may penalize the performance of the aircraft and may actually require a longer runway when compliance with take-off requirements are necessary. The Captain only will make the take-off in RVR 1200 conditions.

[Continued on next page]
<table>
<thead>
<tr>
<th>Pilot Flying</th>
<th>Pilot Not Flying</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controls A/C</td>
<td></td>
</tr>
<tr>
<td>The PF has his/her hand at the top of the Power Levers, advances the Power Levers slowly to approximately Max Power. (97% torque on all but the hottest days.)</td>
<td>Trims for Max Power, calls, “AUTO-FEATHER ARMED MAX POWER SET”</td>
</tr>
<tr>
<td>Calls “SET MAX POWER”</td>
<td>Calls “AIRSPEEDS ALIVE”</td>
</tr>
<tr>
<td>Releases brakes on short runways</td>
<td>Calls “80 KTS”</td>
</tr>
<tr>
<td>Responds, “80 KTS”</td>
<td>Calls “V1”</td>
</tr>
<tr>
<td>Places both hands on control column.</td>
<td></td>
</tr>
<tr>
<td>Rotates 8-10 degrees</td>
<td>Calls “ROTATE”</td>
</tr>
<tr>
<td></td>
<td>Calls, “POSITIVE RATE”</td>
</tr>
<tr>
<td>Commands, “GEAR UP”</td>
<td>Selects Gear UP</td>
</tr>
<tr>
<td></td>
<td>Calls, “GEAR IS UP” when lights Extinguish</td>
</tr>
<tr>
<td></td>
<td>Selects and Calls “YAW DAMP ON”</td>
</tr>
<tr>
<td>Commands, “FLAPS UP, SET CLIMB POWER, AFTER TAKE-OFF CHECKS.”</td>
<td>Calls “400 FT”</td>
</tr>
<tr>
<td></td>
<td>Selects Flaps UP, Reduces torque 10%, Reduces PROPELLER RPM to 1500, Environmental air to Normal.</td>
</tr>
<tr>
<td>Commands “SELECT Heading AND CLIMB ON THE F/D”</td>
<td>Calls “HEADING, CLIMB, ON”</td>
</tr>
<tr>
<td>Calls, “MY POWER LEVERS”</td>
<td>Calls, “YOUR LEVERS”</td>
</tr>
<tr>
<td>Takes control of Power Levers</td>
<td></td>
</tr>
<tr>
<td>When time permits, before 10,000 feet, the PF will call for “AFTER TAKEOFF CHECKS”</td>
<td>Completes After Takeoff Checklist</td>
</tr>
</tbody>
</table>

Some actions by PF and PNF may be interchanged if PF is in the right seat.
1.19.2 Crosswind Take-Off
The maximum demonstrated crosswind component is 20KTS. Normal directional control
techniques should be used with care during transition to full power. Into-wind aileron should be used. If take-off is conducted into gusty crosswinds, and runway lengths permit, it would be advisable to increase the Vr slightly to ensure adequate margins of safety on rotation. A good rule of thumb is to add half the wind speed and all of the gust speed.

1.19.3 RVR 600/1200 Take-Off
A take-off in RVR 1200 conditions will be conducted by the left seat pilot only from a runway served by an ILS and RVR equipment, have high intensity runway lighting and have either runway centreline lighting OR runway centreline markings visible to the pilot throughout the take-off run. All requirements to conduct a 600/1200 RVR takeoff are located in the Company Operations Manual. A take-off alternate has to be specified on the flight plan and must be part of the take-off briefing. If there is any doubt as to whether or not a pilot meets the requirements to conduct a 600/1200 RVR takeoff then they should consult the COM. A complete and thorough take-off briefing will be given for every take-off in RVR 600/1200 conditions. Included in the take-off briefing will be the reject decisions. Prior to 80 kts, the PF will reject the take-off for any indication of abnormalities. Between 80 kts and V1, the PF will reject only for a catastrophic failure, fire or loss of directional control. After V1, the flight is committed to the take-off. There will be as little conversation as possible between the flight crew and no conversation what so ever between the flight and any outside facility. Prior to an indicated speed of 80 kts, the PNF will callout any and all abnormal indications. Between 80 kts and V1, the PNF will cancel all master caution and master warning indicators, ignore all yellow light items and call out only red light items. After V1, the PNF will call out any master caution or master warning light at 400 ft AAE.

1.19.4 Rejected Take-Off
See “EMERGENCIES” for a full description of procedures.

1.20 Climb
Turns will be commenced at no greater than 30 degrees of bank angle and will normally be initiated at a minimum height of 1000 ft. AGL unless requested otherwise by ATC or SID’s. (Note Relief from Net Take-off Flight Path and greater bank angles may be allowed per Ops Spec.) and should be briefed pre-take-off.

After obstacles have been cleared and the flaps have been retracted, the aircraft should be accelerated to a normal cruise climb speed of 160Kts. If a good rate of climb is required, then a lower speed may be used. First consideration is the minimum obstruction clearance altitude and after that, patient comfort. In the mountainous terrain, a good rate of climb is required to clear the terrain but after that, a 5 to 7 degree nose up attitude should be maintained. A nose high attitude is very uncomfortable for the patient lying on the stretcher.

Normal climb schedule should be 160Kts. up to 10,000 ft. and reducing 2kts. for every 1000 ft. thereafter to a minimum of 125kts. (best two engine rate of climb).That should result in a 5 to 7 degree nose up attitude.

The recommended enroute climb technique requires the Propeller RPM levers set at 1500 RPM and to remain at that setting for the remainder of the flight. The PF has the option to set 1600 prop rpm to help depart out of tight or deep valleys. 100% torque is the maximum allowed for continuous operation but 97% will be the company recommended maximum for NORMAL operations. As the aircraft climbs, the power levers will be advanced to maintain 97% torque until an ITT temperature of 785°C is reached where further increases in power will cease. At NO time will the pilot exceed 100% torque or 820°C ITT limits.

The Prop Sync is approved for take-off and landing so it will remain on throughout the flight.
NOTE:
The seat belt sign may be switched off at the discretion of the Captain. In order to ensure passenger safety announcement is mandatory when the seat belt sign is switched back on, particularly when in-flight conditions warrant such a decision.

1.20.1 10,000 foot Check
At 10,000 feet, the PF will call for the 10,000 FT. Checks and extinguish the recognition lights.

1.20.2 Flight Level 180 Transition
Climbing through FL 180, the PNF will initiate the setting of the altimeters.

<table>
<thead>
<tr>
<th>Pilot Flying</th>
<th>Pilot Not Flying</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Transition, altimeters(s) 29.92"</td>
<td></td>
</tr>
<tr>
<td>“29.92”</td>
<td></td>
</tr>
</tbody>
</table>

NOTE:
Due to the high rate of climb capabilities of the aircraft, if the flight is cleared to Flight Level 180 or Flight Level 190, it is suggested the Left seat Pilot's altimeter be set to 29.92 well prior to level off so the altitude alerter will level the airplane at the proper flight level. This is especially important when there is a large difference between Standard Altimeter Setting (QFE) and QNH. The same procedures should be used on descent to 17,000 ft, where the local Altimeter setting should be set prior to descending through FL 180 so there is less chance of an altitude bust.

1.20.3 Effect Of Temperature on Altimeter Readings
(a) All barometric type altimeters are calibrated based on standard conditions, which assumes that the temperature at sea level is 15 degrees C and that it decreases with an increase in altitude at the uniform rate of 2 degrees C for every 1000 ft.
(b) If the existing outside air temperature is higher than standard, the true altitude will be higher than the indicated altitude. Conversely, if the outside temperature is lower than standard, the true altitude will be lower than the indicated altitude.
(c) When operating conditions of extreme cold, flight altitude corrections should be obtained from the AIP/CAP GEN. Any time the destination airport is at 0°C or colder a cold weather correction card should be filled out for and IFR approach. The subsequent card then should be stapled with the OFP at the end of the day.

1.21 Cruise
Although no harm can be done to the engines by running the engines up to 820 degrees ITT, it is Company standard procedure to run the engines at a maximum of 800 degrees ITT.

During level flight the non-flying pilot will do the necessary paperwork. He will also normally handle the radio communications, tune and identify the navigational aids as required or as directed by the flying pilot and program the GPS.

Engine trend monitoring will be carried out above FL180, with ice vanes closed, and torque gauges match but not to exceed 800°C. Engine parameters will be recorded on the trend monitoring sheet after the engines have stabilized over a period of five minutes.

1.22 Descent
Prior to the PF commencing descent, the PNF must obtain the latest weather/ATIS including the altimeter setting for destination. The type of approach planned will be loaded into the GPS. The
Be 350 will land at an airport with a runway of under 3000 ft but may not be able to take off. Balance field length numbers should be worked out before landing to ensure the possibility of departing.

Before initiating the descent, the PF will call for the "descent checklist" and it will be conducted by challenge and response. The PF will conduct the approach briefing as soon as practicable. Since the use of the autopilot is normal, the PF can brief the PNF fully on the approach procedures in use. If a GPS approach is required the PNF will determine RAIM for the approach and verify waypoints.

The pressurization controller must be set to depressurize 500 ft. above field elevation so as to ensure total depressurization prior to touchdown. To calculate pressurization setting, add 500 ft to field elevation + 100 ft for every .10 in/hg BELOW 29.92 in/hg and 500 ft – 100 ft for every 0.10 in/hg ABOVE 29.92 in/hg. Eg; Field elevation 1750 ft. Altimeter setting, 29.92, set pressurization at 2250 ft. Altimeter 30.24 in/hg, set pressurization @ 1950 ft.; Altimeter 29.65 in/hg, set pressurization at 2550 ft. At all times, take into consideration pressure altitude of the airport and through comparison to the actual altimeter settings.

Normally it is advisable to commence a maximum forward airspeed descent to assist in reducing air time, however, it **MUST** be noted that at any time rough air is encountered, or expected, the aircraft must be slowed to maneuvering speed.

NOTE: An increase in torque will be noted during the descent and the power levers **will** need to be adjusted to avoid exceeding Vmo and or torque limits when using the high-speed descent procedure. Do not startle passengers by activating the overspeed warning.

Descent shall be arranged so as to arrive at the minimum sector altitude or MEA shortly before crossing the fix outbound. If VFR conditions exist, descent shall be arranged so as to join the airport pattern at circuit altitude or at the altitude assigned by ATC. During the descent and approach phase of flight, unnecessary communication will be kept to a minimum. There will be no unnecessary communication below 10 000 feet.

The seat belt sign must be turned on prior to encountering ANY turbulence and in any case must be turned on before descent. Since the "Fasten Seat Belt, No Smoking" chimes can be quite loud and the patient may be asleep, visually indicate to the Para Medics to prepare the cabin for landing. An announcement (or visual indication) is required any time the seatbelt sign comes back on, or when turbulence is anticipated.

1.22.1 Flight Level 180 Transition

Descending through FL 180, the PNF will initiate the setting of the altimeters.

<table>
<thead>
<tr>
<th>Pilot Flying</th>
<th>Pilot Not Flying</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Transition, altimeters(s) 30.06"</td>
<td></td>
</tr>
<tr>
<td>"30.06"</td>
<td></td>
</tr>
</tbody>
</table>

NOTE:
Due to the high rate of climb and/or descent capabilities of the aircraft, if the flight is cleared to 17,000 ft from the Flight Levels, it is suggested the Left seat Pilot’s altimeter be set to the local altimeter setting well prior to level off so the altitude select will level the airplane at the proper altitude as opposed to a flight level. This is especially important when there is a large difference.
between Standard Altimeter Setting (QFE) and QNH. The same procedures should be used from the Altimeter Setting region to the Standard Altimeter Setting Region.

1.22.2 10,000 ft Checks
Through 10,000 feet, the PF will call for the 10 000 FT Approach Checks. At this time, it will be normal to turn on the Recognition Lights.

1.23 Holding
If a hold at any fix is required, the hold should be entered at the fix with the aircraft at an airspeed of 160kts with zero flap. The crew will monitor the GPS/FMS and confirm it is entering the hold properly.

1.24 Flap and Gear Operation
When required, the PF will call “FLAPS 40%”, The PNF will respond with “SPEED CHECKS FLAPS SELECTED” as he makes the selection and “40% FLAP SET” as he or she observes the indicator stop at the required setting.

<table>
<thead>
<tr>
<th>Flap Setting</th>
<th>Company Limit (KIAS)</th>
<th>Maximum (KIAS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40%</td>
<td>190</td>
<td>202</td>
</tr>
<tr>
<td>Full</td>
<td>145</td>
<td>158</td>
</tr>
</tbody>
</table>

If possible company limits should be followed as long as it does not affect the safety of the aircraft. When required, the PF will call “GEAR DOWN, LANDING CHECKLIST.” The PNF will select Gear DOWN and respond with “SPEED CHECKS – IN TRANSIT” as he/she observes three green lights the PNF will call “3 GREEN, CONFIRM?” The PF’s response will normally be “CONFIRMED”. The PNF will then continue calling the remaining items on the Landing Checklist.

<table>
<thead>
<tr>
<th>Gear Extension</th>
<th>Company Limit (KIAS)</th>
<th>Maximum (KIAS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gear Down</td>
<td>170</td>
<td>184</td>
</tr>
</tbody>
</table>

1.25 Approach
The traffic pattern should be entered on the downwind leg unless otherwise advised by ATC or Flight Services. If operations are conducted at an uncontrolled airport, uncontrolled airport procedures will be flown. The aircraft should be configured to enter the downwind leg or the commencement of uncontrolled airport procedures at 160 kts and 40% flaps. The landing gear should be lowered shortly before the base turn. This will allow the Landing Checklist to be conducted prior to turning final. Base leg will be flown at 140 kts and flap 40%. On Final, select Flap Full. The aircraft should then be slowed so as to cross the threshold at Vref for the weight and flap setting used. At about 500 ft AAE, the PF will call for the “FINAL LANDING CHECKS” The PNF will run the checklist and disengage the yaw damper.

In terminal areas when ATC so directs, it is acceptable to increase these speeds as required, however turbulent air penetration speeds must outweigh compliance. In the event of non-compliance, ATC must be so advised.

Vref speeds will be chosen applicable to the flap setting used at the time. They will be adjusted as necessary accounting for ice on the airframe or gust factor.

The appropriate traffic patterns should always be flown. A problem can exist with the geography and traffic in the circuit where by following the standard circuit procedures safety can be compromised. Where there is concern and a non-standard entry to the circuit is going to be accomplished the appropriate stations should be advised and reasoning given.
1.25.1 Approach IN IMC, Night VMC, White-Out/Obscured Conditions

The use of the appropriate approach plate is mandatory by both pilots and the ILS or the VASI MUST be flown. "Dipping visually below the VASI or Glideslope" will not be tolerated. During the approach to landing in IMC or night VMC, the PNF will make calls at 1,000 ft., and 100 ft. above minimums. It is mandatory to use the radar altimeter as part of the approach and both RadAlts will be set to the same altitude. Unless the approach is a visual approach in daylight VMC, the approach will be loaded in the FMS, the Flight Director will be programmed and the conventional Nav Aids set and F/D steering commands will be followed. Each pilot shall have the appropriate approach plate in front of him/her whenever practical. A full IFR Approach Briefing will be done whenever the ceiling is reported to be below the relevant sector altitude or the visibility is less than three miles. The altitude alerter will be set to the missed approach altitude as soon as the aircraft commences its approach and leaves the last-alarmed altitude.

For night VMC arrivals to aerodromes without a published IFR approach, the Canada Flight Supplement MUST be consulted to determine if any special procedures are required. Normally, the aircraft will be flown overhead centerfield to join the appropriate downwind leg. A normal circuit pattern will be flown. The VASI or PAPIS (if available) SHALL be followed. If the airport location is in the GPS database, it will be programmed in and displayed. If a published RNAV approach is available, it will be loaded and Vectors to Final will be selected on the GPS so all approach waypoints will be displayed and may be used for advisory. If the final waypoint is the airport, a comparison of TRUE airspeed vs GPS derived groundspeed may be made to provide advance warning of a possible wind shear. If there is a large discrepancy, (± 10 Kts), the PNF will constantly monitor the groundspeed. If the two are in close proximity, a crosscheck at 1000 ft and 500 ft AAE is sufficient. The TAWS will always have terrain displayed on the MFD.

1.25.2 ILS Approach (2 Engine)

If the weather is IFR or marginal VFR, an autopilot-coupled approach, at the PF’s discretion, can be flown. The autopilot will remain engaged until the decision to land is made. The aircraft should be slowed so as to cross the fix outbound at 160 kts. Once outbound, the flaps should be selected to 40% maintaining 160 kts and the propellers advanced to maximum RPM. (When on Radar Vectors, the aircraft should be flown at 0 flap and 160 kts.) This configuration should be maintained until interception of the final approach course inbound. When the glide path comes alive, the flaps should be selected (or confirmed) to 40%, and the aircraft slowed to 140 kts. Upon interception of the glide path the PF will call for, "GEAR DOWN, LANDING CHECKLIST." At the final approach fix, the flaps may be selected to 100% and the aircraft may be slowed to Vref + 10kts. The remainder of the approach is flown at Vref + 10 until the runway is visual. Once visual, the PF will ensure that the aircraft crosses the threshold at Vref. An autopilot-coupled approach is flown in exactly the same manner except the autopilot is maneuvering the airplane instead of the human pilot. Deselect ½ bank prior accepting radar vectors so the autopilot will not overshoot the final approach course. If the weather goes below minimums and the decision is to abandon the approach, the power levers will be advanced to maximum power before “Go- Around” is selected with the power lever button.

<table>
<thead>
<tr>
<th>Pilot Flying</th>
<th>Pilot Not Flying</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>When the runway is sighted, PNF calls “RUNWAY AT ____ O’CLOCK”</td>
<td></td>
</tr>
<tr>
<td>Responds, “VISUAL - LANDING”</td>
<td></td>
</tr>
<tr>
<td>Calls any excessive deviations: “REF +/- ___(5)” “SINK ___(1000)”</td>
<td></td>
</tr>
</tbody>
</table>

In the event that nothing is distinguishable at DH the calls shall be:
PF should verify no distinguishable runway markings are in sight ie. ODALS, lead in lights or RILS

<table>
<thead>
<tr>
<th>“DECISION HEIGHT, no runway, GO AROUND”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advises ATC of the Missed Approach, sets Max Power and raises flap to 40%. “Positive Rate of Climb”</td>
</tr>
<tr>
<td>Selects Gear UP “400 ft”</td>
</tr>
<tr>
<td>Completes the After Take-off Checks.</td>
</tr>
</tbody>
</table>

Where an advantage may be gained, a Pilot Monitored Approach (PMA) may be briefed and conducted. This will comprise the F/O flying the aircraft to minimums on instruments. The Captain, on acquiring visual reference for landing will call:

<table>
<thead>
<tr>
<th>Captain</th>
<th>First Officer</th>
</tr>
</thead>
<tbody>
<tr>
<td>“RUNWAY VISUAL, I HAVE CONTROL”</td>
<td>Responds “YOU HAVE CONTROL”</td>
</tr>
<tr>
<td>Lands the aircraft as PF.</td>
<td>Calls any excessive deviations: “VREF +/- (5) ” “SINK (1000)”</td>
</tr>
<tr>
<td></td>
<td>Continues with PNF duties</td>
</tr>
</tbody>
</table>

This type of approach is advantageous where use of the autopilot system is not used. All the advantages of a PMA approach can be duplicated with an autopilot coupled approach.

NOTE:
At all times, when required, pilots will add the appropriate temperature corrections to the necessary altitudes.
During the approach the non-flying pilot will monitor the instruments and will make the flying pilot aware of excessive deviations especially in altitudes and the inbound track being flown, eg: “ONE DOT BELOW GLIDESLOPE” or, “ONE DOT LEFT OF LOCALIZER.” (i.e. The advisory should not require interpretation.)

ONCE VISUAL, FOR ALL LANDINGS, THE CREW WILL CONFIRM “RUNWAY CLEAR”.

1.25.3 Pilot Monitored Approach (PMA)
A Pilot Monitored Approach procedure shall be utilized during a precision approach anytime the RVR is reported below 2600, or, in the absence of RVR, prevailing visibility is below ½ sm. The landing shall be done with Flaps 100% only. The monitored approach is carried out as follows:
Prior to localizer intercept, the First Officer assumes control of the aircraft.
The Captain shall make the normal SOP call outs with the exception of “ 100 above “ and “ Minimum Decide,” these shall be made the First Officer.
The Captain monitors the entire approach, airspeed, altitude, other instruments, etc. The Captain will maintain his/her hand at the base of the power levers.
When the First Officer calls “ 100 above “ the Captain responds “ Outside “ diverting his/her scan to outside.
When the First Officer calls “ Minimums- Decide “ the Captain will respond with one of the following:
“Landing, I Have Control” – the Captain takes control and lands the aircraft.

“Go-around” – the flying pilot flies a missed approach.
NOTES: If, at Decision Height, the Captain makes NO callout, the First Officer shall carry out a go-around.

If the Captain elects to land, the First Officer will continue to monitor his/her flight instruments until touchdown, and callout any deviations.

If, after the Captain assumes control for landing, and decides to go-around, the CAPTAIN flies the missed approach procedure as a FP. The First Officer continues to monitor the instruments for any deviations and assumes the duties of NFP.

It’s recommended Captain’s use PMA at least once a month for training purpose specially to get use to the procedure at night, the transfer of control, and proper callouts.

<table>
<thead>
<tr>
<th>Captain</th>
<th>First Officer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive motion of localizer bar</td>
<td>“Check”</td>
</tr>
<tr>
<td>“Localizer alive”</td>
<td></td>
</tr>
<tr>
<td>Positive motion of glide slope bar</td>
<td>“Check”</td>
</tr>
<tr>
<td>“Glide slope alive”</td>
<td></td>
</tr>
<tr>
<td>FAF inbound</td>
<td></td>
</tr>
<tr>
<td>“____ Fix name”</td>
<td>“Check”</td>
</tr>
<tr>
<td>“____ Feet”</td>
<td>“____ Flag (s)”</td>
</tr>
<tr>
<td>“____ Flag (s)”</td>
<td></td>
</tr>
<tr>
<td>100 ft above DH</td>
<td></td>
</tr>
<tr>
<td>“100 Above”</td>
<td>Decision height</td>
</tr>
<tr>
<td>“Outside”</td>
<td>“Minimums Decide”</td>
</tr>
<tr>
<td>“Landing, I have control”</td>
<td></td>
</tr>
<tr>
<td>or “Go-around” ***</td>
<td></td>
</tr>
</tbody>
</table>

*** If a Go-around were required, the First Officer would initiate it. Once the Captain becomes reoriented visually with the aircraft instruments, he/she will take control.

1.25.4 Non Precision Approach (2 Engine)
The aircraft should be slowed so as to cross the fix outbound at 160 kts. Once outbound, the props should be advanced to 1700 rpm and flaps should be selected to 40%, maintaining 140 kts. (When on Radar Vectors, the aircraft should be flown at 0 flap and 160 kts.) This configuration should be maintained until interception of the final approach course inbound.

Approaching the FAF, the flaps (if not already) should be selected to 40%, and the aircraft slowed to 140 kts. Over the FAF, the PF will call for, “GEAR DOWN, LANDING CHECKLIST.” The aircraft may then be slowed to “40% flap ref + 10 kts” on final.

If there is no FAF (i.e. NDB on the field with no DME and no published RNAV Approach), once established on the final approach course inbound, select flaps 40%, followed by, “GEAR DOWN, LANDING CHECKS.”

Once visual, the flaps will be selected to 100% and the PF will slow the aircraft so as to cross the threshold at Vref.

<table>
<thead>
<tr>
<th>Pilot Flying</th>
<th>Pilot Not Flying</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>When the runway is sighted, PNF calls “RUNWAY AT ___ O’CLOCK”</td>
</tr>
</tbody>
</table>
Responds, “VISUAL, LANDING. FULL FLAP – FINAL LANDING CHECKS”
Selects Flaps FULL “SPEED CHECKS - FULL FLAPS SET, FINAL LANDING CHECKS COMPLETE”
Calls any excessive deviations: “REF +/- (5)” “SINK (1000)”

In the event that nothing is distinguishable at the MAP, the PNF shall call:

PF should verify no distinguishable runway markings are in sight ie. ODALS, lead in lights or RILS	“MISSED APPROACH POINT, no runway, GO AROUND”
“Go-Around - Max Power”	Advises ATC of the Missed Approach and sets Max Power. “Positive Rate of Climb”
“Gear Up”	Selects Gear UP “400 ft”
“Flaps up – After Take-off Checks”	Completes the After Take-off Checks.

1.25.5 RNAV (GPS / FMS) Approach

TERMINAL AND ENROUTE
All terminal and enroute procedures may be flown by the Left Seat Pilot (LSP) or the Right Seat Pilot (RSP) as the PF.

APPROACHES

All of the GPS and FMS units installed in the King Air 350 are IFR Approach certified. All features of the GPS and FMS can be displayed on the LSP’s EHSI and the center mounted Multi Function Display (MFD). All operational requirements necessary to conduct an approach are available to both pilots. The LSP will have navigation data displayed on the EHSI and the Right Seat Pilot will have the same information displayed on the center mounted MFD. The GPS ACU selector switch is located on the avionics panel, visible to but not accessible to the RSP.

All GPS approaches are either an overlay on an existing non-precision approach or a stand-alone approach with the basic “T” configuration.

All GPS and FMS approaches shall be flown from the left seat. Therefore the LSP (Left Seat Pilot) is considered to be the PF. The RSP (Right Seat Pilot) will be considered the PNF.
<table>
<thead>
<tr>
<th>Pilot Flying</th>
<th>Pilot Not Flying</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Left Seat Pilot)</td>
<td>(Right Seat Pilot)</td>
</tr>
</tbody>
</table>

After Start Checks

<table>
<thead>
<tr>
<th>Pilot Flying</th>
<th>Pilot Not Flying</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPS/FMS Initialization</td>
<td>Load SID (if applicable)</td>
</tr>
<tr>
<td>& Database Verification</td>
<td>Load Flight Plan</td>
</tr>
<tr>
<td></td>
<td>Confirm Waypoints</td>
</tr>
<tr>
<td></td>
<td>Verify Waypoints to the CAP</td>
</tr>
<tr>
<td>Follow Waypoints via the CAP</td>
<td></td>
</tr>
</tbody>
</table>

Enroute

Fly route as cleared by ATC

If the flight is cleared to an airport, do not fly to the IAF on the approach. Be sure the clearance is to the airport vs. the VOR of the same name.

Descent

<table>
<thead>
<tr>
<th>Pilot Flying</th>
<th>Pilot Not Flying</th>
</tr>
</thead>
<tbody>
<tr>
<td>Confirm Waypoints via the CAP</td>
<td>Load the STAR and/or APPROACH</td>
</tr>
<tr>
<td></td>
<td>Verify the Waypoints in the GPS/FMS</td>
</tr>
<tr>
<td></td>
<td>Verify the Armed Legend is Illuminated</td>
</tr>
<tr>
<td></td>
<td>Perform RAIM Checks</td>
</tr>
</tbody>
</table>

For all GPS/FMS approaches, RAIM will monitor satellite conditions and alert the crew if satellite coverage is lost. If this occurs, the GPS receiver cannot be used for primary navigation guidance, a missed approach must be conducted and select either a) another conventional navaid based approach or b) proceed to the alternate.

Within 30 NM of the Destination Airport

Verify the ARM Annunciator is Displayed
And CDI Scaling Changes from 5 NM ENR to the 1 NM TERM Mode

Within 2 NM of the FAF

Verify the CDI Scaling Transitions to the 0.3NM – APR Mode Indicating That The Approach Is Active

Landing Checks

Verify and Inform the LSP that the Approach is Active “Approach is Active”

If the approach has not gone “Active” by the FAF the flightcrew must conduct the missed approach.
Missed Approach

<table>
<thead>
<tr>
<th>Universal FMS</th>
<th>Garmin 400 GPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>At the missed approach point, the sequence to the next waypoint will happen automatically.</td>
<td>At the missed approach point, “SUSP” will appear above the OBS key indicating that automatic sequencing of waypoints is suspended at the missed approach point and a “FROM” indication will appear on the EHSI and CDI. The RSP will press the OBS key on the GPS panel. The next waypoint in the approach is automatically offered as the destination waypoint.</td>
</tr>
</tbody>
</table>

Follow the published missed approach procedures as published on the approach plate.

1.26 Missed Approach or Go-Around

<table>
<thead>
<tr>
<th>Pilot Flying</th>
<th>Pilot Not Flying</th>
</tr>
</thead>
<tbody>
<tr>
<td>“(DH/MAP, no runway,) GO AROUND”</td>
<td>Sets max power, selects flaps 40%</td>
</tr>
<tr>
<td>Controls A/C, Sets approx max power, establishes climb at Vyse</td>
<td>Calls, “POSITIVE RATE”</td>
</tr>
<tr>
<td>Calls, “GO AROUND, SET MAX POWER, FLAPS to 40%”</td>
<td>Selects Gear UP</td>
</tr>
<tr>
<td>Commands, “GEAR UP”</td>
<td>Calls “400 FEET”</td>
</tr>
<tr>
<td>Commands, “FLAPS UP, Climb Power - After Take-off Checks”</td>
<td>Selects Flaps UP, Sets climb torque and props to 1500 or 1600 RPM</td>
</tr>
<tr>
<td></td>
<td>Completes After Takeoff Checklist</td>
</tr>
</tbody>
</table>

1.27 Circling Approach

The approach briefing prior to conducting a circling approach must include the plan for the circling procedure. This includes the planned routing once the runway is visual, which crewmember will be flying the approach and circling procedure, and the exact duties of the PNF. Normally, the approach should be planned so that the PF can fly the circling procedure while maintaining visual contact with the runway. The PF shall include the instruments in their scan. The PNF shall monitor the instruments carefully, and call any deviations to the PF. The PNF may also assist in giving steering directions to the PF. Prior to descending visually, the PF shall call, “LEAVING CIRCLING ALTITUDE.”

A circling approach, precision or non-precision, should be flown with the landing gear in the down position, flaps at 40% and the airspeed at 130 kts. The flaps will be selected to 100% when the landing is assured.

1.28 Single Engine Approaches

In the event that a single engine approach is required, the PF will prompt the PNF for the Single Engine Descent and Single Engine Landing Checklists as soon as the engine is secured. This is to provide a heads-up for planning purposes. During the approach phase, arrange flight to cross the outer marker, or FAF with the aircraft configured with 40% flap and 140 kts indicated airspeed. The landing gear should NOT be lowered and final flap setting selected until the pilot is positive of making the field for the landing. The exception to this is on an ILS approach where
the aircraft is stabilized on the localizer and glideslope and the airspeed is not less than 140kts. The landing gear will be selected down when the aircraft intercepts the glide path, and the remainder of the approach flown with 40% flap and 125 kts once inside the outer marker. A single engine circling approach is flown with the landing gear in the retracted position, 125 kts and 40% flap selected until the Captain is certain of making a successful landing.

1.29 Landing
[Note: For GPS Approach and Landing, Reference Section 1.25.5]
Once the aircraft has touched down on the runway, the nosewheel shall be gently lowered and directional control will be maintained with rudder. Once the propellers reduce pitch to Ground Fine, the power levers can be lifted over the gate to Beta and reverse. The power levers will be moved AFT of the flight idle gate and a small amount of reverse thrust will be applied once all 3 landing gear are on the runway. Once the aircraft has slowed below 60 Knots, full reverse must reduced to a maximum of ground fine to prevent FOD ingestion,

NOTE:
(a) For landing with ice accumulation on the airframe the Vref speeds must be increased by 10kts.
(b) Hydroplaning risks will be taken into account (refer to AIP for full details).
(c) Adjust Vref for wind speed and gusts.
(d) Once all three landing gear microswitches have made contact the aircraft prop pitch angle will immediately decrease to +2° or ground fine. If the situation warrants it you can manually select ground fine by moving the power levers up over the gate. This maneuver manually bypasses the microswitches for shorter landing distances.

<table>
<thead>
<tr>
<th>Pilot Flying</th>
<th>Pilot Not Flying</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lowers the nosewheel and maintains directional control. Moves power levers to the flight idle gate and as required moves them over the gate into ground fine.</td>
<td>No calls</td>
</tr>
<tr>
<td>Moves power levers up over ground fine gate and into reverse thrust (if desired)</td>
<td>As the plane slows to 60 kts. Calls "60 kts."</td>
</tr>
<tr>
<td>Brings the power levers out of reverse and into ground fine. Slows the aircraft to a safe taxi speed and clears the runway.</td>
<td>Calls for taxi clearance</td>
</tr>
<tr>
<td>Calls "AFTER LANDING CHECKS"</td>
<td>Preforms the After Landing Checks</td>
</tr>
</tbody>
</table>

NOTE:
Both the PF and PNF will conduct after landing flows, which is done by memory. The after landing checklist will be preformed silently by the PNF and verbally finished with the call “AFTER LANDING CHECKLIST COMPLETE.” The PNF should assist the PF with executing any memory flow items within reach. The idea is to assist PF without distracting him/her and allowing him/her to concentrate on taxiing the airplane.

1.29.1 Crosswind Landings
On final approach, runway alignment should be maintained with normal crab inputs. Over the threshold and during the flare, the upwind wing should be lowered slightly and the runway centerline maintained with the application of opposite rudder. Once down, maximum aileron deflection into wind may be required to assist in directional control.

1.29.2 Partial Flap Landings
No partial flap landings are allowed. The flap settings for landing are either 0% or 100%.
1.29.3 After Landing
Once the aircraft is clear of the runway, the PNF should request taxi clearance and will be prompted by the PF for the after landing checks.

1.30 Engine Shutdown
At no time should the engine shutdown procedure be accomplished without first referring to the checklist and ensuring that the appropriate items have been turned off prior to closing the condition levers to fuel cutoff.

1.31 Cockpit Organization
The cockpit shall be kept neat and orderly at all times.
This page intentionally left blank
2 Operating Notes and Emergencies

2.0 Emergency Procedures

The intention of this section of the SOP is not one of duplicating the AFM, but rather to outline to both crew members their respective duties during an actual emergency, as well as to clarify what each pilot’s role will be depending on which seat he/she is occupying when the emergency occurs.

This section is only a listing of memorized emergencies requiring immediate vital actions by the crew. Other in-flight emergencies may occur and can be handled by a challenge and response of all checklist items. Therefore it is not necessary to duplicate.

The use of a “crew concept” in normal operations is mandatory at all times and the following principles will apply during emergencies.

- Appropriate delegation of tasks and assignments of responsibilities.
- Establishment of a logical order of priorities.
- Monitoring and cross checking of essential instruments and systems.
- Assessment of problems with care and avoidance of preoccupation with minor ones.
- Clear and concise communications among crew members.
- Sound leadership by the Captain AT ALL TIMES.

It is essential that crews exercise the greatest degree of discipline in carrying out the treatment of emergency situations and subsequent management of abnormal and normal procedures and checklists.

Following any in-flight failure:

<table>
<thead>
<tr>
<th>Pilot Flying</th>
<th>Non Pilot Flying</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flight path and airspeed control</td>
<td>Verification of failures</td>
</tr>
<tr>
<td>Power setting</td>
<td>Challenging checklist items</td>
</tr>
<tr>
<td>Aircraft configuration</td>
<td>Execution of checklist items as required</td>
</tr>
<tr>
<td>Navigation</td>
<td>Confirmation of checklist items completed</td>
</tr>
</tbody>
</table>

2.1 Pilot Incapacitation

Incapacitation of an individual can be either obvious or subtle. Obvious incapacitation can be caused by anything from heart failure to a speck of dust in the pilot’s eye. Subtle incapacitation can be caused by anything from a brain tumor to a mental lapse caused by stress.

Recognition of obvious incapacitation by definition presents no problem. Subtle or partial incapacitation is particularly insidious in that the non-functioning pilot can enter this state with no warning or indication and may appear perfectly normal with eyes open and hands on the controls. Recognition of subtle incapacitation may take considerable time and presents a unique problem for the PNF. That is, how far should he allow the aircraft to deviate before taking control from the PF. For these reasons, the “TWO COMMUNICATION RULE” shall be adopted to reduce the risk of accident, especially in the critical phases of flight, the take-off and initial climb and the approach and landing.

2.2 Two Communication Rule

Whenever the other pilot does not respond to two verbal communication attempts with either a reply or by executing a corrective flight maneuver, you will say “I HAVE CONTROL” (if you are
not already the pilot flying) and will take over control of the aircraft until it can be ascertained that
the lack of response was not caused by incapacitation.

Whenever incapacitation occurs whether obvious or subtle, the procedure to follow is:

Assume control and fly the aircraft to a safe situation.
Restrain and/or remove the incapacitated pilot.
Reorganize the cockpit and prepare for landing.
Arrange for an ambulance to meet the aircraft.

2.3 Boarding/Deplaning with an Engine(s) Running
It is Carson Air’s policy to not allow passengers to board or deplane with engine(s) running.

2.4 Lap and Shoulder Harness
The lap belt shall be worn at all times and the shoulder harness shall be worn for take-off and
landing. Above 10,000 feet, in smooth air, the shoulder harness may be removed. The medical
staff will be consulted as to the procedures for placing the shoulder straps on the patient. Pilots
have to be careful that safety harness does not interfere with medical equipment attached to the
patient.

2.5 Operating in Icing Conditions (In visible moisture and OAT less than +5°C)
This aircraft is certified for flight in icing conditions as defined in FAR 25, Appendix C. The
conditions evaluated for certification do not include all icing conditions that may be found in flight
(e.g. freezing rain, freezing drizzle, mixed icing conditions, or conditions defined as severe.) If
these conditions are encountered, they may produce hazardous ice accumulations which exceed
the capabilities of the airplane’s ice protection systems and may result in degraded airplane
performance. Flight into icing conditions that lie outside the FAR-defined conditions is not
recommended and pilots are advised to be prepared to immediately divert the flight if hazardous
ice accumulations occur.

Pilots should be aware that ice will accumulate in low pressure areas (such as the engine inlets
screens) before it is visible to the pilot on the windshield wipers and wing leading edges. The
following anti-ice systems should be turned on prior to entering and used continuously anytime
visible moisture (rain, fog, clouds, ice pellets, etc) is encountered and the OAT is below +5°C.

Pitot Heat
Engine Ice Protection (Vanes) and Prop Heat
\textbf{Windshield Heat} – Normal or High as required
Ignition – Auto
\textbf{Deice Boots} must be activated at the first sign of ice formation anywhere on the aircraft. This
procedure is mandatory to comply with AD 2000-06-04.

When icing conditions are entered, it is the Captain’s responsibility to exit or avoid these
conditions as quickly as possible. Prolonged flight in icing conditions is prohibited.

Should icing conditions be entered inadvertently, the Engine Ice Vanes will be deployed.

For \textbf{Ground Operations} in icing conditions, when the outside air temperature is below 10°C the
engine ice vanes may be deployed for take-off and landing. For operations at +5 °C or colder, the
propeller anti-icing systems should be selected to Auto.

For \textbf{Take-off} in icing conditions, normal take-off procedures should be followed.
Adjustment to aircraft performance with engine anti-ice ON is noted in the AFM performance charts. Since the engine is thermally derated, the power loss associated with the ice vanes deployed is negligible. It is the Captain's responsibility to refer to the appropriate charts in the performance section of the AFM and apply the adjustments as required to the take-off performance of the aircraft.

2.6 **Circuit Breakers**
The company policy on resetting circuit breakers is as follows.

In-flight:
Circuit breakers can be grouped in the following categories.
Very large amperage current limiters,
Very large amperage circuit breakers,
Large amperage non-essential circuit breakers,
Small amperage non-essential circuit breakers,
Small amperage essential circuit breakers.

In the King Air 350, very large amperage current limiters cannot be reset or replaced in-flight. A maintenance action is required to return the service to normal operation. If a current limiter opens or blows, the service it protects will be lost for the duration of the flight. The most obvious very large amperage current limiters are the ones used to protect the left and right generator busses from a short or fault in the centre bus and the current limiters and/or circuit breakers used to protect high current draw items such as the landing gear hydraulic pump or the flap motor. If any one of these protective devices blow, the circuit they protect will be lost until a maintenance action can take place. Emergency procedures are in place to counter this problem.

Any small amperage circuit breakers protecting nonessential circuits will not be reset. Emergency or Abnormal checklist procedures are in place to operate without the protected services.

The only essential small amperage circuit breaker that can be reset once is the landing gear control circuit breaker. The pilot should be able to hear the landing gear motor operating under strain or for an abnormal amount of time, usually on gear retraction. If this happens and the circuit breaker should pop before pilot actions can take place, it is acceptable to place the landing gear handle down, wait for a cool down period and reset the landing gear control circuit breaker once. If the landing gear goes down, discontinue further flight until the problem can be attended to.

2.7 **Emergencies (General)**

If the First Officer is flying the aircraft when an emergency occurs, the Captain may take over control of the aircraft at any time. The First Officer will then assume the responsibilities of the PNF.

All actions taken should be done in a positive and deliberate manner and should not be done in haste. The responsibility of the PF is to fly the aircraft without distraction. The PNF will initiate the vital (memory) actions by calling the first memory item on the checklist. The PNF will position his/her hand on the appropriate item and will ask for a confirmation and the command by the PF before actioning the command. In the case of an Engine Fire in Flight, the PNF will continue with the remainder of the memory items, asking the PF to confirm all items before they are actioned. After all of the vital actions are complete, when appropriate, the PF will call for the appropriate emergency checklist.

EG: PF: "#1 / #2 ENGINE SHUTDOWN DRILL"
PNF: Places hand on the correct condition lever and calls, "CONFIRM - #1 / #2 CONDITION LEVER?"
PF: If correct, "CONFIRMED - CUT OFF"
2.8 Stall Recovery

Deliberate approaches to the stall for crew training, tests or demonstration may be carried out subject to the following conditions:

- At an altitude that will ensure recovery by 5000 AGL and 2000 above cloud.
- The aircraft must be clear of any cloud and free of any ice accumulation.
- Both engines must be operating.
- No elevator trim inputs made below blue line.

During training a heading and an altitude will be assigned as reference. The PF will call for the descent checks and once the descent checks have been carried out he will call for the approach checks. The PNF will conduct these checks through the challenge and response method, but will only complete those items necessary for the configuration of the aircraft for the exercise.

Should the STALL WARNING system give a stall warning in any phase of flight the PF will call, “STALL! SET MAX POWER.” The PF will begin advancing the power levers and the PNF will set max power. As the power is being advanced, the PF will level the wings. If the stall occurs with the flaps extended beyond 40%, the PF will call, “FLAPS TO APPROACH.” The PF shall transition the aircraft to a climb profile and climb at Vyse. With the gear down, when a positive rate is achieved the PF will call for the gear up. The PF will continue to climb the aircraft at Vyse until obstacles are clear. When safe, the PF will call for “(FLAPS UP,) AFTER TAKEOFF CHECKS.”
2.9 Rejected Take-Off (malfunction below V1)
A Rejected Take-Off (RTO) is one of the most critical emergency decisions that a flight crew can make. They are also quite rare. Only 2% of RTO's occur near V1. V1 is calculated as the maximum speed at which an RTO can be initiated with a hope of stopping on the runway. It must be recognized by crews that V1 is actually the upper limit of decision speed since any delay (typically, observation, analysis and reaction time) will allow the aircraft to accelerate further above V1, increasing the stopping distance required. RTO initiation at this point will likely result in a runway excursion.

Early in the takeoff roll, prior to reaching 80 kts, ANY MALFUNCTION should be regarded as grounds to reject the takeoff. This is usually due to items being missed on the checklist, misplaced switches, or improper use of aircraft systems. In this case, the aircraft should be taxied clear of the runway and, using checklists, the aircraft re-configured correctly for the takeoff.

Above 80 kts but below V1, only major events such as catastrophic engine failure, severe bird strikes, fire, or other red annunciator lights should prompt an RTO. Any other item which would not prevent the aircraft from continuing the take-off safely and returning for a landing may well promote a runway excursion with disastrous results and should be noted, but systematically disregarded by the crew. Thus, at this stage, a yellow light should not prompt an RTO.

Generally speaking, above V1, a continued take-off is the safest course unless a catastrophic event has rendered the aircraft un-airworthy. The exception to this may be a take-off from a 10,000 feet runway in VMC conditions. On most days, V1 for such an event can be when the aircraft is airborne. V1 is reached when there is insufficient runway to reject and stop and therefore V1 is when the call for landing gear retraction is called. This option should be used only in VMC conditions with a dry runway with little of no crosswind. The procedure MUST briefed by the PF.

As indicated, there is no hard and fast rule to every likelihood. Only a thorough briefing prepares the crew to respond in adequate fashion to a possible RTO.

When an RTO item is identified, either pilot may call and initiate the RTO. The PF will keep his/her hand on the top of the power levers until V1 is called, and thus maintains primary authority as to whether an actual RTO will be initiated. Typically, this would be:

<table>
<thead>
<tr>
<th>Pilot Flying</th>
<th>Pilot Not Flying</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calls, “STALL!” Lower the nose, level the wings, set approx max power</td>
<td></td>
</tr>
<tr>
<td>Calls, “SET MAX POWER - FLAPS TO APPROACH”</td>
<td>Sets max power and selects to flaps40%</td>
</tr>
<tr>
<td>Establish a climb</td>
<td>Calls, “POSITIVE RATE”</td>
</tr>
<tr>
<td>Calls, “GEAR UP”</td>
<td>Selects Gear UP</td>
</tr>
<tr>
<td>Climb at Vyse to a safe altitude</td>
<td>Assist in identifying when obstacles are clear</td>
</tr>
<tr>
<td>When safe, commands, “FLAPS UP”</td>
<td>Selects Flaps to 0% and resets max power</td>
</tr>
<tr>
<td>Calls, “MY LEVERS” and selects control of Power Levers</td>
<td>Calls, “YOUR LEVERS”</td>
</tr>
<tr>
<td>When time permits, the PF will call for “AFTER TAKEOFF CHECKS”</td>
<td>Completes After Takeoff Checklist</td>
</tr>
</tbody>
</table>
(a) Captain or F/O... “REJECT! REJECT! REJECT!”
(b) PF moves power levers to ground idle to begin RTO procedure
(c) PF continues with the following:
 a. Power Levers – Ground Fine
 b. Brakes – Maximum
 c. Reverse Thrust, if available – As Required
 d. Stop Aircraft or Taxi Clear of Runway
 e. Emergency Checklists – As Required (e.g. Engine Failure/Fire)

If the take-off was rejected because of a critical malfunction and vital actions are required, (e.g.: engine fire), the aircraft will be brought to a complete stop on the runway and the park brake will be set. The F/O will advise ATC. The Captain will then commence the Emergency Checklist Procedures, and command the F/O to proceed to the cabin area and prepare the passengers for evacuation.

2.10 Engine/Cabin Fire on the Ground

<table>
<thead>
<tr>
<th>Captain</th>
<th>First Officer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Takes control of Aircraft</td>
<td></td>
</tr>
<tr>
<td>Positions aircraft to keep smoke away from exits and sets Park Brake</td>
<td>Advises ATC</td>
</tr>
<tr>
<td>Commands F/O to prepare to evacuate passengers</td>
<td>Moves to cabin area and prepares to evacuate passengers</td>
</tr>
<tr>
<td>Both Condition Levers – FUEL CUTOFF</td>
<td></td>
</tr>
<tr>
<td>Both Propeller Levers – FEATHER</td>
<td></td>
</tr>
<tr>
<td>Both Firewall Fuel Valves – PRESS</td>
<td></td>
</tr>
<tr>
<td>Appropriate Fire Button – PRESS</td>
<td></td>
</tr>
<tr>
<td>Master Switch – OFF (GANG BAR DOWN)</td>
<td>Evacuates passengers</td>
</tr>
<tr>
<td>Battery Bus Switch – EMERG OFF</td>
<td></td>
</tr>
<tr>
<td>Emergency checklist - COMPLETE</td>
<td></td>
</tr>
<tr>
<td>Evacuates aircraft</td>
<td></td>
</tr>
</tbody>
</table>

NOTE:
It is the Captain’s responsibility to see that all passengers and crew are evacuated safely.
2.11 Engine Fire in Flight

<table>
<thead>
<tr>
<th>Pilot Flying</th>
<th>Pilot Not Flying</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asks, “CONFIRM #1 / #2 ENGINE FIRE?”</td>
<td>If correct, “CONFIRMED - #1 / #2 ENGINE FIRE”</td>
</tr>
<tr>
<td>Commands - #1 / #2 ENGINE SHUTDOWN DRILL</td>
<td>Places hand on correct condition lever and asks, “CONFIRM - #1 / #2 CONDITION LEVER?”</td>
</tr>
<tr>
<td>If correct, “CONFIRMED - CUTOFF”</td>
<td>Moves condition lever to Cutoff.</td>
</tr>
<tr>
<td>If correct, “CONFIRMED – FEATHER”</td>
<td>Places hand on correct Prop lever and asks, “CONFIRM - #1 / #2 PROP LEVER?”</td>
</tr>
<tr>
<td>If correct, “CONFIRMED – PRESS”</td>
<td>Moves prop lever to Feather.</td>
</tr>
<tr>
<td>Places FINGER on correct Fuel Firewall Valve and asks, “CONFIRM - #1 / #2 FIREWALL VALVE?”</td>
<td>Places finger on correct Fire Bottle and asks, “CONFIRM - #1 / #2 FIRE BOTTLE?”</td>
</tr>
<tr>
<td>If correct, “CONFIRMED – PRESS”</td>
<td>Lifts cover and presses Fire Bottle.</td>
</tr>
<tr>
<td>When appropriate, calls for “EMERGENCY CHECKLIST”</td>
<td>Continues with Emergency Checklist items by challenge and response</td>
</tr>
</tbody>
</table>

2.12 Engine Failure or Fire at or Above V1, Takeoff Continued

<table>
<thead>
<tr>
<th>Pilot Flying</th>
<th>Pilot Not Flying</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calls, “SET MAX POWER”</td>
<td>Sets max power</td>
</tr>
<tr>
<td>Rotates Aircraft and climbs at V2</td>
<td>At Vr calls, “ROTATE”</td>
</tr>
<tr>
<td>Commands, “GEAR UP”</td>
<td>Calls, “POSITIVE RATE”</td>
</tr>
<tr>
<td>Continues climbing at V2</td>
<td>Selects Gear Up Call, “GEAR IS UP” when lights out</td>
</tr>
<tr>
<td>Identifies Failed Engine and asks “CONFIRM #1 / #2 ENGINE HAS FAILED, FEATHERED AND NO FIRE?”</td>
<td>Verifies Failed Engine. If correct calls, “THE #1 / #2 ENGINE HAS FAILED, HAS FEATHERED AND NO FIRE”</td>
</tr>
<tr>
<td>Maintains V2 until 400ft or until clear of obstacles</td>
<td>Calls, “400 FT”</td>
</tr>
<tr>
<td>Commands, “FLAPS UP, AND EMERGENCY CHECKLIST”</td>
<td>Brings Flaps to 0%, and advises ATC of problem.</td>
</tr>
<tr>
<td>If clear of obstacles airspeed increases to Vyse (125 Kts).</td>
<td>Carries out memory items and then conducts the Emergency Checklist.</td>
</tr>
</tbody>
</table>
Continues climbing at Vyse until either MSA, MEA, MOCA, 100nm Safe altitude is reached

NOTE: Engine failure is verified by checking ITT, Torque, RPM, and Fuel Confirmation of Autofeather can be done by noting if the prop has ceased rotation.

If there is an associated Engine Fire…

<table>
<thead>
<tr>
<th>Pilot Flying</th>
<th>Pilot Not Flying</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calls, “SET MAX POWER”</td>
<td>Sets max power</td>
</tr>
<tr>
<td>Rotates Aircraft and climbs at V2</td>
<td>At Vr calls, “ROTATE”</td>
</tr>
<tr>
<td>Commands, “GEAR UP”</td>
<td>Calls, “POSITIVE RATE”</td>
</tr>
<tr>
<td>Continues climbing at V2</td>
<td>Selects Gear Up</td>
</tr>
<tr>
<td>Identifies Failed Engine and asks “CONFIRM #1 / #2 ENGINE HAS FAILED, FEATHERED AND NO FIRE?”</td>
<td>Verifies Failed Engine. If correct calls, “THE #1 / #2 ENGINE HAS FAILED, HAS FEATHERED AND THERE IS FIRE”</td>
</tr>
<tr>
<td>Maintains V2 until 400ft or until clear of obstacles</td>
<td>Calls, “400 FT”</td>
</tr>
<tr>
<td>Commands, “FLAPS UP, AND EMERGENCY CHECKLIST” If clear of obstacles airspeed increases to Vyse (125 Kts).</td>
<td>Brings Flaps to 0%, and advises ATC of problem. Carries out memory items and then conducts the Emergency Checklist.</td>
</tr>
</tbody>
</table>

NOTE: Engine failure is verified by checking ITT, Torque, RPM, and Fuel Confirmation of autofeather can be done by noting if the prop has ceased rotation.
2.13 Engine Failure During Flight

<table>
<thead>
<tr>
<th>Pilot Flying</th>
<th>Pilot Not Flying</th>
</tr>
</thead>
</table>
| Identifies Failed Engine and asks **CONFIRM #1 / #2 ENGINE HAS FAILED, FEATHERED AND NO FIRE?** | **Verifies** Failed Engine. If correct calls, "THE #1 / #2 ENGINE HAS FAILED, HAS NOT FEATHERED AND NO FIRE"
| Commands - #1 / #2 ENGINE SHUTDOWN DRILL | Places hand on correct Condition Lever and asks, "CONFIRM #1 / #2 CONDITION LEVER?"
| If correct, "CONFIRMED - CUTOFF" | Moves Condition Lever to fuel cutoff.
| If correct, "CONFIRMED – FEATHER" | Places hand on correct Prop lever and asks, "CONFIRM - #1 / #2 PROP LEVER?"
| If correct, "CONFIRMED – PRESS" | Moves prop lever to Feather.
| Places FINGER on correct Fuel Firewall Valve and asks, "CONFIRM - #1 / #2 FIREWALL VALVE?" | Places hand on correct Prop lever and asks, "CONFIRM - #1 / #2 PROP LEVER?"
| When appropriate, calls for "EMERGENCY CHECKLIST" | Continues with Emergency Checklist items by challenge and response

NOTE: Engine failure is verified by checking ITT, Torque, RPM, and Fuel Confirmation of autofeather can be done by noting if the prop has ceased rotation.

2.14 Smoke in the Aircraft

<table>
<thead>
<tr>
<th>Pilot Flying</th>
<th>Pilot Not Flying</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continues flying Aircraft</td>
<td>DONS MASK</td>
</tr>
</tbody>
</table>
| Verifies O2 Supply Control Handle – PULLED ON | Selects mask - EMER POSITION
| DONS MASK | Selects mic – O2 MASK
| Selects mask - EMER POSITION | Selects Audio Speaker - ON
| Selects mic – O2 MASK | Takes control of Aircraft
| Selects Audio Speaker - ON | Passenger Manual O2 Drop-Out – ON
| Takes control of Aircraft | Establishes communications
| When appropriate, calls for "EMERGENCY CHECKLIST" | Ensures passengers put masks ON
| Continues with Emergency Checklist items by challenge and response |
2.15 Emergency Descent

<table>
<thead>
<tr>
<th>Pilot Flying</th>
<th>Pilot Not Flying</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advises ATC and begins Descent.</td>
<td>DONS MASK</td>
</tr>
<tr>
<td>Verifies O2 Supply Control Handle – PULLED ON</td>
<td>Selects mask - EMER POSITION</td>
</tr>
<tr>
<td></td>
<td>Selects mic – O2 MASK</td>
</tr>
<tr>
<td></td>
<td>Selects Audio Speaker - ON</td>
</tr>
<tr>
<td></td>
<td>Takes control of Aircraft and Continues Descent.</td>
</tr>
<tr>
<td>DONS MASK</td>
<td>Establishes Communications</td>
</tr>
<tr>
<td></td>
<td>Takes control of Aircraft</td>
</tr>
<tr>
<td></td>
<td>Ensures passengers put masks ON</td>
</tr>
<tr>
<td></td>
<td>Briefs passengers on PA</td>
</tr>
</tbody>
</table>

NOTES:

a) A 90-degree turn to vacate an airway may be made if considered necessary.
b) A check for terrain clearance shall be made. A TARGET ALTITUDE shall be 10000 feet or 14000 feet in Mountainous Regions.
c) Should the emergency descent be initiated because the emergency checklist calls for cabin dump, the cabin will dump to a cabin altitude of 13,000 ft.

2.16 Bomb Threat

a) **IN-FLIGHT:** Should the Captain be advised of a bomb threat, the situation is to be assessed and a diversion initiated at the nearest suitable airport with facilities to assist in the deplaning of passengers, affording shelter and conducting a search of the aircraft.
b) **AFTER LANDING:** Upon landing, proceed to a safe area, shut down both engines and direct the First Officer to deplane the passengers.
c) Consult with police, airport security or bomb disposal personnel as to:
 i) Disposition of passengers
 ii) Further unloading of baggage
 iii) Search of aircraft
 iv) Search of luggage/freight

NOTE: Unloading baggage/freight and searching the aircraft is only done by the authorities.

a) Ensure passengers are afforded shelter and are briefed on the emergency situation on a need-to-know basis.
b) Keep Carson Air Ltd. informed

2.17 Hijacking

The Captain should divert to the nearest suitable and equipped airfield and land the aircraft. Prepare an excuse if asked the reason by the hijacker. The Captain should, however, cooperate with the hijacker and use his judgement and direction for the safety of the passengers and crew.
Use the transponder code 7500 to notify ATC of the situation and state the phrase, “SQUAWKING 7500.” Additional signals are:

A change from code 7500 to 7700 indicates the situation is desperate and the aircraft wants armed intervention.

If, after the aircraft lands, the flaps are lowered or left down, the aircraft wants armed intervention and the aircraft immobilized.

If, after the aircraft lands, the flaps are raised, the aircraft does not want armed intervention. The aircraft may also transmit the phrase, “BACK ON SEVEN FIVE ZERO ZERO,” to emphasize the intervention is no longer required.

Using the word “trip” will also covertly advise ATC agencies of a hijacking situation. “Clearance delivery this is Eclipse 77 requesting IFR clearance for a “trip” to CYLW”.

Pilots must use their best judgement in dealing with life threatening situations.

2.18 Emergency Landing/Ditching
For a landing following an airborne emergency or for any landing when the situation presents a significant hazard, as soon as practical after the initial emergency actions, brief the passengers. The amount of detail will vary depending on the time available. The briefing should be in the following format. It follows the acronym TESTRA for recollection:

2.18.1 Type of emergency
Briefly indicate what the emergency is, i.e. Engine failure, Hydraulic Malfunction, Cracked Window, etc. Obviously, more detail must be provided to crewmembers than to passengers.

2.18.2 Evacuation information
Evacuation information should include: whether the landing will be on or off an aerodrome including a water evacuation. The route and/or exits that are to be used to evacuate from the aircraft must be discussed.

2.18.3 Signals
Detail the calls that will be used to signal bracing for landing/impact and for commencing evacuation. Depending on the situation, the signals could include: a call on the intercom, a series of chimes of the seatbelt sign, a call on the public address system, activation of emergency lights, or a combination thereof.

2.18.4 Time remaining
Brief the time remaining to landing and, if different, the time remaining to prepare. Depending on the nature of the emergency it may be necessary to cease preparations some time before landing (i.e. Controllability difficulties may necessitate that no one move about the aircraft during the latter part of descent).

2.18.5 Relocation of Passengers
Brief if it is necessary/advisable to relocate passengers, or if movement of passengers is not permitted (due to time or adverse affects on the balance of the aircraft).

2.18.6 Announcements
The Captain should brief the passengers. The announcement should follow the same format as the briefing to the crew, i.e. “TESTRA.” The Captain’s announcement should make it clear to the passengers that the crew is managing the situation.
The following procedures are considered appropriate in the conduct of an Emergency landing:

Advise ATC and any other relevant agencies of intentions and Crash, Fire, Rescue (CFR) requirements;
Secure all loose objects on the flight deck and in the cabin;
Ensure all crew and passenger seat belts and shoulder harnesses are secure and locked;
Review the applicable post landing procedures with all crew members;
If applicable: De-pressurize the aircraft and select the Emergency lights to ON;
If appropriate, plan for an Evacuation once the aircraft comes to a stop;
Once the aircraft comes to a stop, specifically direct the passengers to remain seated and await instructions. Then, if appropriate, initiate the Evacuation drill.

2.18.7 Evacuation drill
The evacuation drill is initiated by the captain using the standard call “EVACUATE.” If the Captain is unable to issue the command, the first officer shall do so. If both the Captain and First Officer are unable to initiate the evacuation, any other crew member may do so. The expanded evacuation drill is as follows:

Stop the aircraft
Parking Brake………………………………..Set (Captain)
Stop and Feather…………………………….Pull (Captain)
Fuel Boost Pumps……………………………Off (Captain)
Batteries…………………………………….…Off (Captain)
Evacuate the aircraft.

The standard call to initiate evacuation is “EVACUATE.” The command is to be spoken three times in a clear loud voice.

2.18.8 Passenger Evacuation
As soon a the aircraft has come to a full stop, the PNF will leave the cockpit to direct and assist the passengers with the evacuation through the appropriate exit and direct them to a safe area away from the aircraft. When all passengers have exited the aircraft, the PNF will ensure that the PF has been able to exit the cockpit before leaving the aircraft.
3 System Checks and Operational Requirements

3.0 General
This section discusses the systems checks that are required at various intervals as well as a
departure briefing, take-off briefing and suggestions as to the daily operating techniques that
should be utilized. Following these directives provides a safe and efficient environment within
which to operate.

3.1 Crew Briefing

3.1.1 Take-Off Briefing
To the extent practical the Take-off briefing should be concise. It is not necessary to repeat
standard items and procedures. For example, if it is standard to always abort the take-off in the
event of a malfunction before V1 (and it should be) there is no need to repeat this fact. The items
that should be included in the Take-off briefing are those that change routinely (ie., speeds that
change with weight) or items that are normally standard but are different for this particular take-
off (ie, a turn before 400 ft. above the departure end due to obstacles). Similarly, procedures that
are published in the CAP may be referred to by name only, ie, "The departure procedure is
SOMEWHERE SIX." Depending on the circumstances and the type of aircraft, the Take-off
briefing may be as simple as "This will be a Standard Takeoff" to one that is quite complex.
In setting a company policy for briefings, consider that short, simple briefings are more likely to
be understood and remembered than ones that are long and complex but very complete.
A take-off briefing shall consist of any items that can vary from take-off to take-off.

a) Company Standard vs. Non Standard (non-standard refers to any deviation from
SOPs)***
b) Runway and Intersection
c) Take-off weight
d) Flap setting
e) V1, Vr, V2 and Vyse
f) Departure Procedures
g) (Noise Abatement Procedures)
h) (First Flight of Day Review of Emergencies)***
i) Emergency return
j) (Special Considerations)
k) Questions?
l) Briefing complete

First Flight of Day Example:
"This will be a Company Standard Takeoff Runway 08R from A4 intersection. Our weight is 14
000 lbs and will set flaps to approach. Speeds are 95, 102, 107, and 125. We’re cleared the
Vancouver 7 Departure. (Noise Abatement Procedures) Emergency return is for Runway 08R via
the ILS. (Special Considerations) Any questions?"

NOTE:
An emergency brief should be given for the first flight of the or when there’s a crew change.
Once it has been reviewed it’s considered part of Company Standard Takeoff.
A Company Standard Takeoff includes a power setting of Maximum Takeoff Power.
In the event that a crew is doing multiple departures from a familiar airport, they may use the
abbreviated briefing of “As per Kelowna SID.”
An example of this is when the crew is departing Kelowna for the 5th time in one day. They
haven't briefed on the SID and as long as there are no deviations then the abbreviated briefing
is acceptable.
3.1.2 Emergency Briefing
As above the emergency briefing should be done only once a day or when crews change.
The company emergency briefing will be as follows:

(a) In the event of anything affecting safety of the aircraft prior to V1 we will Reject the
takeoff by calling Reject.
(b) In the event of an engine failure or fire at or above V1 the calls will be for Max power.
You call positive rate and I'll call gear up. We'll identify the engine has failed,
feathered and there's no fire. In the event we have no autofeather, I'll get you to
identify the appropriate prop lever. I'll confirm the prop and we'll feather it manually.
Emergency checklist and after takeoffs when safe.
(c) In the event that we do have autofeather, no action is required. Emergency checklist
and after takeoffs when safe.
Any fire we fight through 400 ft.

3.1.3 Approach Briefing
VMC: Indicate circuit entry, runway, Vref. Please note that if you are planning to
transition from IMC to Visual conditions you should brief on the approach in the event the
weather deteriorates.

Example: Left hand visual runway 03, with a Vref of 113 knots.

IMC: Whenever an approach or part of an approach is anticipated or whenever the
ceiling is reported to be below the relevant sector altitude and the visibility is less than
three miles, a full approach briefing shall be given. Each pilot will have the appropriate
approach plate in front of him/her.

a) “This will be a (type of approach) to runway _____ at (destination), (effective date of
approach plate).”
b) “The airport elevation is ______”
c) “The 100nm safe altitude is ______”
d) “The 25nm sector altitude off of ______ nav aid is ______”
e) “Tune identify all applicable nav aids on my command.”
f) “Inbound track is ______”
g) “Procedure turn altitude is ____”****
h) “Stepdowns are ______”
i) “Minimums are _____”
j) “Timing (if applicable)”
k) “Missed approach instructions”
l) “PNF calls 1000, 100 above minimums and any deviation above/below or left/right of
inbound course (these items will be SOPs so no mention is necessary)”

NOTE:
At this time the briefing should also include the type of procedure turn and all appropriate
headings to accomplish it.

3.2 Period Systems Checks
The following systems checks are to be done at the specified time intervals. A full description
can be found in the AFM.

3.2.1 Current Limiter Check
Completed after every engine start - Engines running
3.2.2 Electrical System Check
Completed once per day - Prior to engine start

<table>
<thead>
<tr>
<th>GEN TIES MANUAL – CLOSE</th>
<th>Check: Bus Tie annunciators are extinguished</th>
</tr>
</thead>
<tbody>
<tr>
<td>Momentarily Press BUS SENSE to TEST</td>
<td>Check: Left & right GEN BUS TIE and BATT BUS TIE annunciators are illuminated. Check: Triple Fed Bus should read battery voltage, left and right gen busses should read zero, and center bus should move steadily to zero voltage.</td>
</tr>
<tr>
<td>Momentarily Press BUS SENSE to RESET</td>
<td>Check Bus Tie annunciators extinguished Battery Bus, Center Bus, Both Gen Busses should read Battery voltage.</td>
</tr>
</tbody>
</table>

** NOTE** Select Bus Test and Reset momentarily only. Latching requires .010 second. Continued pressing will cause damage to contacts.

3.2.3 Inverter System Check
(once/day) * Engines running or ground power

Both Inverters on	Both Inverter Fail Annunciators extinguished. Voltage and frequency checked
Select #1 Inverter Switch Off	Check #1 Inverter Fail Annunciator illuminated.
Select #1 Inverter Switch to Bus Transfer	Check #1 Inverter Fail Annunciator extinguished
Select #1 Inverter on	Inverter Fail capsules extinguished
Repeat for #2 Inverter.	Inverter System Test Complete
3.2.4 Electric Trim Check
Completed once per day - Prior to engine start

<table>
<thead>
<tr>
<th>Circuit breakers</th>
<th>IN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual pilot trim switches</td>
<td>Note trim wheel movement</td>
</tr>
<tr>
<td>a) Both</td>
<td>Note no movement on one switch</td>
</tr>
<tr>
<td>b) One only</td>
<td></td>
</tr>
<tr>
<td>Repeat for co-pilot's trim switches</td>
<td>Test Complete</td>
</tr>
<tr>
<td>Engage elevator trim</td>
<td>Disconnect with control wheel switch to second level. Note Elec Trim Off annunciator illuminates</td>
</tr>
<tr>
<td>Trim Switch Off, Reset, On</td>
<td>Note Elec Trim Off annunciator illuminated and then extinguishes</td>
</tr>
</tbody>
</table>

3.2.5 Autopilot Test

| Press autopilot on once. (Must be done prior to every flight before autopilot will engage) | Autopilot will begin self test as indicated by autopilot symbol in EADI flashing yellow then going out. |
| Press autopilot on second time (Should be done first flight of the day) | Autopilot will engage. Autopilot symbol will appear white on EADI, press trim switch, autopilot will disconnect, autopilot symbol will change to yellow, begin flashing and disappear |

3.2.6 Yaw Damp System Test

Repeat as for autopilot test. Disconnect with red control column switch to first level

3.2.7 Stall Warning System

Once per day prior to engine start

| Stall Avoidance Test Switch On | Listen for warning, Note vane vibrating. Test Complete |

3.2.8 Overspeed Warning Test

Prior to engine start

Press test button, Listen for whooler. Repeat for landing gear warning, hydraulic system low, cabin alt warning.

3.2.9 Overspeed Governor / Rudder Boost

Once per day; Engines running

This Test must be done with the engines running. Because of high power necessary, use caution for FOD and aircraft behind.

Propellers	Full Forward.
Brakes	Set
Overspeed Gov Test Switch to GOV Prop Levers Forward	Advance Power Levers Individually until RPM stabilizes @ 1565 + / - 45 RPM.
Appropriate rudder pedal should depress for appropriate power lever.	DISC TRIM / AP YD Button – Depress first level and release
Rudder boost interrupted.	Power lever idle.
Repeat for opposite side.	
3.2.10 Engine and Prop De-Ice

* Engines running

<table>
<thead>
<tr>
<th>Description</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine @ 1500 RPM</td>
<td>Note Ammeter indications</td>
</tr>
<tr>
<td>Prop heat switches - Auto</td>
<td></td>
</tr>
<tr>
<td>Prop heat switches - Manual</td>
<td>Note no indication on Prop Ammeter but increase in generator load</td>
</tr>
<tr>
<td>Engine Ice vanes.</td>
<td>If down, select up. If up, select down. Note annunciators when down and slight drop in torque. If up, select down on main or standby actuators, to select up, switch to opposite actuators.</td>
</tr>
<tr>
<td>Select Windshield heat on.</td>
<td>Note increase in generator load</td>
</tr>
<tr>
<td>Pitot heat on.</td>
<td>Note increase in generator load</td>
</tr>
</tbody>
</table>

3.2.11 Airframe De-Ice System

* Engines running

<table>
<thead>
<tr>
<th>Description</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engines</td>
<td>1500 RPM</td>
</tr>
<tr>
<td>De-ice boot switch</td>
<td>Manual (hold)</td>
</tr>
<tr>
<td>De-ice pressure gauge</td>
<td>Momentary drop below 18 psi</td>
</tr>
<tr>
<td>De-ice boots inflated.</td>
<td>Observe</td>
</tr>
<tr>
<td>Tail de-ice annunciator</td>
<td>On.</td>
</tr>
<tr>
<td>De-ice boot switch</td>
<td>Auto</td>
</tr>
<tr>
<td>De-ice pressure gauge</td>
<td>Pressure drop for 6 seconds and then a fluctuation and another drop in pressure for 4 sec. Return to 18 psi. Tail de-ice annunciator on, boots inflate and then deflate.</td>
</tr>
</tbody>
</table>
3.2.12 **Autofeather System Test**
(once/day or 1200 RVR take-off)
* Engines running

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autofeather Test Switch</td>
<td>Hold in Test</td>
</tr>
<tr>
<td>Both Power Levers</td>
<td>Advance to approx. 25%. Torque. Note Autofeather annunciators illuminated.</td>
</tr>
<tr>
<td>One Power Lever - Retarded</td>
<td>At 17% torque, Opposite Autofeather annunciator extinguishes. At 10% torque, retarded propeller begins to feather. Continues to cycle between feather and unfeather.</td>
</tr>
<tr>
<td>Advance retarded Power Lever</td>
<td>Cycling ceases and annunciator illuminates</td>
</tr>
<tr>
<td>Repeat for other power lever.</td>
<td>Same reaction on opposite propeller.</td>
</tr>
<tr>
<td>Advance retarded Power Lever</td>
<td>Cycling ceases and annunciator illuminates</td>
</tr>
<tr>
<td>Both Power Levers Idle.</td>
<td>Autofeather annunciators extinguish and autofeather ceases. Release test switch. Test Complete</td>
</tr>
</tbody>
</table>

3.2.13 **Fire Extinguisher System**
* prior to engine start

<table>
<thead>
<tr>
<th>Test</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main annunciator test button</td>
<td>Press</td>
</tr>
<tr>
<td>Fire lights (red)</td>
<td>Illuminated</td>
</tr>
<tr>
<td>Fire, E, OK lights</td>
<td>Illuminated</td>
</tr>
</tbody>
</table>

3.2.14 **Oxygen Supply and Use**

Normally, all flights will be operated so that the CABIN ALTITUDE will not exceed 10,000 feet. In the event of a cabin decompression when flying at higher altitudes, the flight will immediately descend to and operate at a cabin altitude not above 10,000 feet unless when required to fly higher for safety reasons. If the cabin emergency dump system is used, the cabin will dump to 13,000 ft cabin altitude.

If the CABIN ALTITUDE goes above 10,000 ft. emergency oxygen may be required by passengers and a PA announcement will be made by the flight crew advising passengers of the situation, and to place the oxygen mask provided on. When the CABIN ALTITUDE descends below 10,000 ft, a PA announcement will be made from the flight deck advising passengers that emergency oxygen is no longer required.

Whenever passenger emergency oxygen system is being used, the “NO SMOKING” lights shall be checked ON.

3.3 **Time and Clock**

Kelowna local time will be used throughout for all records and flight logs. It must also be noted that the date on all journey log entries must also reflect Kelowna local time.
3.4 Collision and Bird Avoidance – Use of Lights

Nav Lights will be left ON at all times unless battery power is at a premium.
Beacon Light(s) will be turned ON immediately prior to engine start.
Nav and Strobe Lights will be used from lineup to after landing unless strobes present an
unwarranted in-flight distraction.
Recognition lights will normally be used below 10 000 feet.
Landing and Recognition lights will be used for takeoff and landing unless it is felt that the
probability of a successful approach is increased by leaving them off.
Wing inspection and tail logo lights can also be used to enhance visibility

3.5 Fuel Requirements

The Captain of the aircraft will check minimum fuel requirements for all flights. The Captain
should use their discretion and may increase minimum fuel. Consideration of variations in fuel
cost at stations should be taken into account when setting a fuel minimum or a desired fuel
figure. Under no circumstances shall safety be compromised by fuel cost consideration.
Fortunately, the Super King Air 350 can usually be dispatched with full fuel. The only
consideration will be the necessity to reduce maximum take-off weight on shorter strips.
A flight shall not be commenced unless, having regard to the meteorological conditions and
delays that are expected in flight, the airplane carries sufficient fuel and oil to ensure that the
flight can be completed safety; and a reserve of fuel and oil sufficient to provide for contingencies
and enable the aircraft to reach the airport of intended landing, and alternate, and a fuel reserve
of 45 minutes.